Aragón S, Møller AP, Soler JJ, Soler M. Molecular phylogeny of cuckoos supports a polyphyletic origin of brood parasitism. J Evol Biol. 1999;12:495–506.
Article
Google Scholar
Archibald GW. Crane taxonomy as revealed by the unison call. Proceedings of the international crane workshop. Stillwater: Oklahoma State University. 1976;1:225–51.
Arnold SJ, Kiemnec-Tyburczy KM, Houck LD. The evolution of courtship behavior in plethodontid salamanders, contrasting patterns of stasis and diversification. Herpetologica. 2017;73:190–205.
Article
Google Scholar
Beauchamp G. The evolution of communal roosting in birds: origin and secondary losses. Behav Ecol. 1999;10:675–87.
Article
Google Scholar
Blomberg SP, Garland T Jr, Ives AR. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution. 2003;57:717–45.
PubMed
Google Scholar
Boast AP, Chapman B, Herrera MB, Worthy TH, Scofield RP, Tennyson AJD, et al. Mitochondrial genomes from New Zealand’s extinct adzebills (Aves: Aptornithidae: Aptornis) support a sister-taxon relationship with the Afro-Madagascan Sarothruridae. Diversity. 2019;11:24.
Article
CAS
Google Scholar
Bryan DC, Kirwan GM. Limpkin (Aramus guarauna). In: del Hoyo J, Elliott A, Sargatal J, Christie DA, de Juana E, editors. Handbook of birds of the world alive. Barcelona: Lynx Edici; 2018. p. 1–4.
Google Scholar
Cap H, Aulagnier S, Deleporte P. The phylogeny and behaviour of Cervidae (Ruminantia Pecora). Ethol Ecol Evol. 2002;14:199–216.
Article
Google Scholar
Cap H, Deleporte P, Joachim J, Reby D. Male vocal behavior and phylogeny in deer. Cladistics. 2008;24:917–31.
Article
PubMed
Google Scholar
de Queiroz A, Wimberger PH. The usefulness of behavior for phylogeny estimation: levels of homoplasy in behavioral and morphological characters. Evolution. 1993;47:46–60.
Article
PubMed
Google Scholar
Deleporte P, Cap H. Behavioural phylogeny of Bovidae. Zitteliana B. 2014;32:175–84.
Google Scholar
Dinets V. Crane dances as play behaviour. Ibis. 2013;155:424–5.
Article
Google Scholar
Downs CT, Bredin IP, Wragg PD. More than eating dirt: a review of avian geophagy. Afr Zool. 2019;54:1–19.
Article
Google Scholar
Duda P, Zrzavý J. Evolution of life history and behavior in Hominidae: towards phylogenetic reconstruction of the chimpanzee-human last common ancestor. J Hum Evol. 2013;65:424–46.
Article
PubMed
Google Scholar
Ekman J, Ericson PGP. Out of Gondwanaland; the evolutionary history of cooperative breeding and social behaviour among crows, magpies, jays and allies. Proc R Soc B Biol Sci. 2006;273:1117–25.
Article
Google Scholar
Ellis DH, Swengel SR, Archibald GW, Kepler CB. A sociogram for the cranes of the world. Behav Process. 1998;43:125–51.
Article
CAS
Google Scholar
Ericson PGP, Irestedt M, Nylander JAA, Christidis L, Joseph L, Qu Y. Parallel evolution of bower-building behavior in two groups of bowerbirds suggested by phylogenomics. Syst Biol. 2020;69:820–9.
Article
PubMed
PubMed Central
Google Scholar
Fain MG, Krajewski C, Houde P. Phylogeny of “core Gruiformes” (Aves: Grues) and resolution of the Limpkin-Sungrebe problem. Mol Phylogenet Evol. 2007;43:515–29.
Article
CAS
PubMed
Google Scholar
Ganslosser U. Stages in formation of social relationships—an experimental investigation in kangaroos (Macropodoidea: Mammalia). Ethology. 1993;94:221–47.
Article
Google Scholar
Gansloßer U. Courtship behaviour in Macropodoidea (kangaroos, wallabies and rat kangaroos)—phylogenetic and ecological influences on ritualization. Mammal Rev. 1995;25:131–57.
Article
Google Scholar
García-R JC, Gibb GC, Trewick SA. Eocene diversification of crown group rails (Aves: Gruiformes: Rallidae). PLoS ONE. 2014;9:e109635.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gatesy J, Milinkovitch M, Waddell V, Stanhope M. Stability of cladistic relationships between Cetacea and higher-level artiodactyl taxa. Syst Biol. 1999;48:6–20.
Article
CAS
PubMed
Google Scholar
Gaubert P, Wozencraft WC, Cordeiro-Estrela P, Veron G. Mosaics of convergences and noise in morphological phylogenies: what’s in a viverrid-like carnivoran? Syst Biol. 2005;54:865–94.
Article
PubMed
Google Scholar
Geist V. On speciation in Ice Age mammals, with special reference to cervids and caprids. Can J Zool. 1987;65:1067–84.
Article
Google Scholar
Goloboff PA. NONA ver. 2.0. 2002. Tucumán, Argentina: published by the author. 1999. p. 45–111.
Goloboff PA, Pittman M, Pol D, Xu X. Morphological data sets fit a common mechanism much more poorly than DNA sequences and call into question the Mkv model. Syst Biol. 2019;68:494–504.
CAS
PubMed
Google Scholar
Gong J, Zhao R, Huang Q, Sun X, Huang L, Jing M. Two mitogenomes in Gruiformes (Amaurornis akool/A. phoenicurus) and the phylogenetic placement of Rallidae. Genes Genom. 2017;39:987–95.
Article
CAS
Google Scholar
Harris J, Mirande C. A global overview of cranes: status, threats and conservation priorities. Chin Birds. 2013;4:189–209.
Article
Google Scholar
Hemmer H. Untersuchungen zur stammesgeschichte der Pantherkatzen (Pantherinae). Veröff Zool Staatssamml München. 1966;11:111–21.
Google Scholar
Hendry AP, Wenburg JK, Bentzen P, Volk EC, Quinn TP. Rapid evolution of reproductive isolation in the wild: evidence from introduced salmon. Science. 2000;290:516–8.
Article
CAS
PubMed
Google Scholar
IUCN. The IUCN Red List of Threatened Species. Version 2021-1. 2021. https://www.iucnredlist.org. Accessed 20 Feb 2021.
Johnsgard PA. Evolutionary trends in the behaviour and morphology of the Anatidae. Wildfowl Trust Tenth Annu Rep. 1962;13:130–48.
Google Scholar
Johnsgard PA. Handbook of waterfowl behavior. Ithaca: Cornell University Press; 1965.
Google Scholar
Johnsgard PA. Cranes of the world. Bloomington: Indiana University Press; 1983.
Google Scholar
Jones KL, Krapu GL, Brandt DA, Ashley MV. Population genetic structure in migratory sandhill cranes and the role of Pleistocene glaciations. Mol Ecol. 2005;14:2645–57.
Article
CAS
PubMed
Google Scholar
Keck F, Rimet F, Bouchez A, Franc A. Phylosignal: an R package to measure, test, and explore the phylogenetic signal. Ecol Evol. 2016;6:2774–80.
Article
PubMed
PubMed Central
Google Scholar
Kennedy M, Spencer HG, Gray RD. Hop, step and gape: do the social displays of the Pelecaniformes reflect phylogeny? Anim Behav. 1996;51:273–91.
Article
Google Scholar
Krajewski C. Phylogenetic taxonomy of cranes and the evolutionary origin of the whooping crane. In: Nyhus PJ, French JB, Converse SJ, Austin JE, Delap JH, editors. Whooping cranes: biology and conservation. Biodiversity of the world: conservation from genes to landscapes. Cambridge: Academic Press; 2019. p. 17–24.
Chapter
Google Scholar
Krajewski C, Sipiorski JT, Anderson FE. Complete mitochondrial genome sequences and the phylogeny of cranes (Gruiformes: Gruidae). Auk. 2010;127:440–52.
Article
Google Scholar
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kusmierski R, Borgia G, Uy A, Grozier RH. Labile evolution of display traits in bowerbirds indicates reduced effects of phylogenetic constraint. Proc R Soc B Biol Sci. 1997;264:307–13.
Article
CAS
Google Scholar
Lefebvre L, Ducatez S, Audet JN. Feeding innovations in a nested phylogeny of Neotropical passerines. Philos Trans R Soc B Biol Sci. 2016;371:20150188.
Article
Google Scholar
Leyhausen P. Katzen – eine Verhaltenskunde. 5th ed. Berlin und Hamburg: Verlag Paul Parey; 1979.
Google Scholar
Li G, Davis BW, Eizirik E, Murphy WJ. Phylogenomic evidence for ancient hybridization in the genomes of living cats (Felidae). Genome Res. 2016;26:1–11.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ligon RA, Diaz CD, Morano JL, Troscianko J, Stevens M, Moskeland A, et al. Evolution of correlated complexity in the radically different courtship signals of birds-of-paradise. PLoS Biol. 2018;16:e2006962.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lister AM. Behavioural leads in evolution: evidence from the fossil record. Biol J Linn Soc. 2014;112:315–31.
Article
Google Scholar
Livezey BC. A phylogenetic analysis and classification of recent dabbling ducks (Tribe Anatini) based on comparative morphology. Auk. 1991;108:471–507.
Article
Google Scholar
Livezey BC. A phylogenetic analysis of the Gruiformes (Aves) based on morphological characters, with an emphasis on the rails (Rallidae). Philos Trans R Soc Lond B Biol Sci. 1998;353:2077–151.
Article
Google Scholar
Lorenz K. Vergleichende Bewegungsstudien an Anatinen. J Ornithol. 1941;89:194–294.
Google Scholar
Malange J, Alberts CC, Oliveira ES, Japyassú HF. The evolution of behavioural systems: a study of grooming in rodents. Behaviour. 2013;150:1295–324.
Article
Google Scholar
Mattern MY, McLennan DA. Phylogeny and speciation of felids. Cladistics. 2000;16:232–53.
Article
PubMed
Google Scholar
McCarthy EM. Handbook of avian hybrids of the world. Oxford: Oxford University Press; 2006.
Google Scholar
McLennan DA, Mattern MY. The phylogeny of the Gasterosteidae: combining behavioral and morphological data sets. Cladistics. 2001;17:11–27.
Article
Google Scholar
Miles MC, Fuxjager MJ. Phenotypic diversity arises from secondary signal loss in the elaborate visual displays of toucans and barbets. Am Nat. 2019;194:152–67.
Article
PubMed
Google Scholar
Ottenburghs J, Ydenberg RC, van Hooft P, van Wieren SE, Prins HHT. The avian hybrids project: gathering the scientific literature on avian hybridization. Ibis. 2015;157:892–4.
Article
Google Scholar
Panov EN, Pavlova EY, Nepomnyashchikh VA. Signal behavior in cranes (the Siberian Crane Sarcogeranus leucogeranus, the White-naped Crane Grus vipio, and the Red-crowned Crane Grus japonensis) in the context of the ritualization hypothesis. Biol Bull. 2010;37:915–40.
Article
Google Scholar
Paterson AM, Wallis GP, Gray RD. Penguins, Petrel, and parsimony: does cladistic analysis of behavior reflect seabird phylogeny? Evolution. 1995;49:974–89.
Article
PubMed
Google Scholar
Penndorf J, Aplin L. Environmental and life history factors, but not age, influence social learning about food: a meta-analysis. Anim Behav. 2020;167:161–76.
Article
Google Scholar
Prange H. Die Welt der Kraniche: Leben-Umfeld-Schutz: Verbreitung aller 15 Arten. Germany: Martin-Luther-Universität Halle-Wittenberg; 2016.
Google Scholar
Price JJ, Clapp MK, Omland KE. Where have all the trees gone? The declining use of phylogenies in animal behaviour journals. Anim Behav. 2011;81:667–70.
Article
Google Scholar
Prum RO. Phylogenetic analysis of the evolution of display behavior in the Neotropical manakins (Aves: Pipridae). Ethology. 1990;84:202–31.
Article
Google Scholar
Prum RO. Phylogenetic analysis of the evolution of alternative social behavior in the manakins (Aves : Pipridae). Evolution. 1994;48:1657–75.
Article
PubMed
Google Scholar
Prum RO. Sexual selection and the evolution of mechanical sound production in manakins (Aves: Pipridae). Anim Behav. 1998;55:977–94.
Article
CAS
PubMed
Google Scholar
Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Lemmon EM, et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature. 2015;526:569–73.
Article
CAS
PubMed
Google Scholar
Rendall D, Di Fiore A. Homoplasy, homology, and the perceived special status of behavior in evolution. J Hum Evol. 2007;52:504–21.
Article
PubMed
Google Scholar
Revell LJ. phytools: an R package for phylogenetic comparative biology (and other things). Method Ecol Evol. 2012;3:217–23.
Article
Google Scholar
Rhymer JM, Fain MG, Austin JE, Johnson DH, Krajewski C. Mitochondrial phylogeography, subspecific taxonomy, and conservation genetics of sandhill cranes (Grus canadensis; Aves: Gruidae). Conserv Genet. 2001;2:203–18.
Article
CAS
Google Scholar
Sansom RS, Wills MA. Fossilization causes organisms to appear erroneously primitive by distorting evolutionary trees. Sci Rep. 2013;3:2545.
Article
PubMed
PubMed Central
Google Scholar
Scholes E III. Evolution of the courtship phenotype in the bird of paradise genus Parotia (Aves: Paradisaeidae): homology, phylogeny, and modularity. Biol J Linn Soc. 2008;94:491–504.
Article
Google Scholar
Schrago CG, Aguiar BO, Mello B. Comparative evaluation of maximum parsimony and Bayesian phylogenetic reconstruction using empirical morphological data. J Evol Biol. 2018;31:1477–84.
Article
PubMed
Google Scholar
Scotland RW, Pennington RT. Homology and systematics: coding characters for phylogenetic analysis. Systematics association special volumes. Los Angeles: CRC Press; 2000.
Google Scholar
Scotland RW, Olmstead RG, Bennett JR. Phylogeny reconstruction: the role of morphology. Syst Biol. 2003;52:539–48.
Article
PubMed
Google Scholar
Senter P. Voices of the past: a review of Paleozoic and Mesozoic animal sounds. Hist Biol. 2008;20:255–87.
Article
Google Scholar
Spade DA. An extended model for phylogenetic maximum likelihood based on discrete morphological characters. Stat Appl Genet Mol Biol. 2020;19:20190029.
Article
Google Scholar
Sunquist M, Sunquist F. Wild cats of the world. Chicago: The University of Chicago Press; 1996.
Google Scholar
Takeda KF, Hiraiwa-Hasegawa M, Kutsukake N. Duet displays within a flock function as a joint resource defence signal in the red-crowned crane. Behav Ecol Sociobiol. 2018;72:66.
Article
Google Scholar
Takeda KF, Hiraiwa-Hasegawa M, Kutsukake N. Uncoordinated dances associated with high reproductive success in a crane. Behav Ecol. 2019;30:101–6.
Article
Google Scholar
Varga Z, Ronkay G, Nagy J, Ronkay L. Contribution to the taxonomy and phylogeny of the genus Polia Ochsenheimer, 1816 (Noctuidae, Noctuinae, Hadenini): species groups and pairs in the Holarctic subgenus Polia s. str. Acta Zool Acad Sci H. 2020;66:35–67.
Article
Google Scholar
Vrba ES, Schaller GB. Antelopes, deer, and relatives. New Haven: Yale University Press; 2000.
Google Scholar
Walther FR. Communication and expression in hoofed mammals. Bloomington: Indiana University Press; 1984.
Google Scholar
Wood TC, Krajewski C. Mitochondrial DNA sequence variation among the subspecies of Sarus Crane (Grus antigone). Auk. 1996;113:655–63.
Article
Google Scholar
Wu DD, Ding XD, Wang S, Wójcik JM, Zhang Y, Tokarska M, et al. Pervasive introgression facilitated domestication and adaptation in the Bos species complex. Nat Ecol Evol. 2018;2:1139–45.
Article
PubMed
Google Scholar