Ahumada JA, Hurtado J, Lizcano D. Monitoring the status and trends of tropical forest terrestrial vertebrate communities from camera trap data: a tool for conservation. PLoS ONE. 2013;8:e73707.
Article
CAS
Google Scholar
Bailey LL, MacKenzie DI, Nichols JD, Cooch E. Advances and applications of occupancy models. Methods Ecol Evol. 2014;5:1269–79.
Article
Google Scholar
Bastianelli G, Wintle BA, Martin EH, Seoane J, Laiolo P. Species partitioning in a temperate mountain chain: segregation by habitat vs. interspecific competition. Ecol Evol. 2017;7:2685–96.
Article
Google Scholar
Bu H, Wang F, McShea WJ, Lu Z, Wang D, Li S. Spatial co-occurrence and activity patterns of mesocarnivores in the temperate forests of Southwest China. PLoS ONE. 2016;11:e0164271.
Article
Google Scholar
Burnham KP, Anderson DR. Multimodel inference: understanding AIC and BIC in model selection. Sociol Method Res. 2004;33:261–304.
Article
Google Scholar
Burton CA, Neilson E, Moreira D, Ladle A, Steenweg R, Fisher JT, et al. Wildlife camera trapping: a review and recommendations for linking surveys to ecological processes. J Appl Ecol. 2015;52:675–85.
Article
Google Scholar
Cai DS, Song XJ. Bioresource and protection countermeasure in National Reserve of Chebaling in Guangdong province. Ecol Sci. 2005;24:282–5 (in Chinese).
Google Scholar
Chen YH, Luiselli L. Species richness and co-occurrence patterns of Galliformes in China at three large spatial scales: does scale size matter? Revue D Ecologie. 2009;64:251–60.
Google Scholar
Crowley PH, Cox JJ. Intraguild mutualism. Trends Ecol Evol. 2011;26:627–33.
Article
Google Scholar
D’Amen M, Mod HK, Gotelli NJ, Guisan A. Disentangling biotic interactions, environmental filters, and dispersal limitation as drivers of species co-occurrence. Ecography. 2018;41:1233–44.
Article
Google Scholar
Davies TJ, Meiri S, Barraclough TG, Gittleman JL. Species co-existence and character divergence across carnivores. Ecol Lett. 2007;10:146–52.
Article
Google Scholar
Davis CL, Rich LN, Farris ZJ, Kelly MJ, Di Bitetti MS, Blanco YD, et al. Ecological correlates of the spatial co-occurrence of sympatric mammalian carnivores worldwide. Ecol Lett. 2018;21:1401–12.
Article
Google Scholar
Di Bitetti MS, De Angelo CD, Di Blanco YE, Paviolo A. Niche partitioning and species coexistence in a neotropical felid assemblage. Acta Oecol. 2010;36:403–12.
Article
Google Scholar
Dröge E, Creel S, Becker MS, M’Soka J. Spatial and temporal avoidance of risk within a large carnivore guild. Ecol Evol. 2017;7:189–99.
Article
Google Scholar
Estevo CA, Nagy-Reis MB, Nichols JD. When habitat matters: habitat preferences can modulate co-occurrence patterns of similar sympatric species. PLoS ONE. 2017;12:e0179489.
Article
Google Scholar
Frey S, Fisher JT, Burton AC, Volpe JP, Rowcliffe M. Investigating animal activity patterns and temporal niche partitioning using camera-trap data: challenges and opportunities. Remote Sens Ecol Conserv. 2017;3:123–32.
Article
Google Scholar
Haynes TB, Schmutz JA, Lindberg MS, Wright KG, Uher-Koch BD, Rosenberger AE. Occupancy of yellow-billed and Pacific loons: evidence for interspecific competition and habitat-mediated co-occurrence. J Avian Biol. 2014;45:296–304.
Article
Google Scholar
HilleRisLambers J, Adler PB, Harpole WS, Levine JM, Mayfield MM. Rethinking community assembly through the lens of coexistence theory. Annu Rev Ecol Evol Syst. 2012;43:227–48.
Article
Google Scholar
Hubbell SP. The unified neutral theory of biodiversity and biogeography. Princeton: Princeton University Press; 2001.
Google Scholar
Hutchinson GE. Concluding remarks. Cold Spring Harb Symp Quant Biol. 1957;22:415–27.
Article
Google Scholar
Jankowski JE, Robinson SK, Levey DJ. Squeezed at the top: interspecific aggression may constrain elevational ranges in tropical birds. Ecology. 2010;91:1877–84.
Article
Google Scholar
Karanth KU, Srivathsa A, Vasudev D, Puri M, Parameshwaran R, Kumar NS. Spatio-temporal interactions facilitate large carnivore sympatry across a resource gradient. Philos Trans R Soc Lond B Biol Sci. 2017. https://doi.org/10.1098/rspb.2016.1860.
Article
Google Scholar
Kendall WL, White GC. A cautionary note on substituting spatial subunits for repeated temporal sampling in studies of site occupancy. J Appl Ecol. 2009;46:1182–8.
Google Scholar
Kraft NJB, Adler PB, Godoy O, James EC, Fuller S, Levine JM, et al. Community assembly, coexistence and the environmental filtering metaphor. Funct Ecol. 2015;29:592–9.
Article
Google Scholar
Kronfeld-Schor N, Dayan T. Partitioning of time as an ecological resource. Annu Rev Ecol Evol Syst. 2003;34:153–81.
Article
Google Scholar
Kronfeld-Schor N, Visser ME, Salis L, van Gils JA. Chronobiology of interspecific interactions in a changing world. Philos Trans R Soc Lond B Biol Sci. 2017. https://doi.org/10.1098/rstb.2016.0248.
Article
PubMed
PubMed Central
Google Scholar
Latif QS, Ellis MM, Amundson CL. A broader definition of occupancy: comment on Hayes and Monfils. J Wildl Manag. 2016;80:192–4.
Article
Google Scholar
Lima SL, Bednekoff PA. Temporal variation in danger drives antipredator behavior: the predation risk allocation hypothesis. Am Nat. 1999;153:649–59.
Article
Google Scholar
Luo G, Yang C, Zhou H, Seitz M, Wu Y, Ran J. Habitat use and diel activity pattern of the Tibetan Snowcock (Tetraogallus tibetanus): a case study using camera traps for surveying high-elevation bird species. Avian Res. 2019;10:4.
Article
Google Scholar
MacKenzie DI, Hines JE. Package.RPresence. R Interface for program PRESENCE. R Package Version 2.12.20. 2018.
MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA. Estimating site occupancy rates when detection probabilities are less than one. Ecology. 2002;83:2248–55.
Article
Google Scholar
MacKenzie DI, Bailey LL, Nichols JD. Investigating species co-occurrence patterns when species are detected imperfectly. J Anim Ecol. 2004;73:546–55.
Article
Google Scholar
MacKenzie DI, Nichols JD, Royle JA, Pollock KH, Bailey L, Hines JE. Occupancy estimation and modeling: inferring patterns and dynamics of species cccurrence. San Diego: Elsevier; 2017.
Google Scholar
Mahendiran M. Coexistence of three sympatric cormorants (Phalacrocorax spp.); partitioning of time as an ecological resource. R Soc Open Sci. 2016;3:160175.
Article
Google Scholar
Maphisa DH, Smit-Robinson H, Altwegg R. Dynamic multi-species occupancy models of birds of high altitude grasslands in eastern South Africa. PeerJ Prepr. 2018;6:e26932v1.
Google Scholar
Martin EH, Ndibalema VG, Rovero F. Does variation between dry and wet seasons affect tropical forest mammals’ occupancy and detectability by camera traps? Case study from the Udzungwa Mountains, Tanzania. Afr J Ecol. 2017;55:37–46.
Article
Google Scholar
Meredith M, Ridout MS. Estimates of coefficient of overlapping for animal activity patterns. R Package Version 0.3.2. 2018.
Niedballa J, Sollmann R, bin Mohamed A, Bender J, Wilting A. Defining habitat covariates in camera-trap based occupancy studies. Sci Rep. 2015;5:17041.
Article
CAS
Google Scholar
O’Connell AF, Nichols JD, Karanth KU. Camera traps in animal ecology: methods and analyses. New York: Springer; 2010.
Google Scholar
O’Connor KM, Nathan LR, Liberati MR, Tingley MW, Vokoun JC, Rittenhouse TAG. Camera trap arrays improve detection probability of wildlife: investigating study design considerations using an empirical dataset. PLoS ONE. 2017;12:e0175684.
Article
Google Scholar
Petersen WJ, Savini T, Steinmetz R, Ngoprasert D. Periodic resource scarcity and potential for interspecific competition influences distribution of small carnivores in a seasonally dry tropical forest fragment. Mammal Biol. 2019;95:112–22.
Article
Google Scholar
R Core Team. R: a language and environment for statistical computing. Vienna, Austria. R Foundation for Statistical Computing. 2018. https://www.R-project.org/. Accessed 5 Oct 2018.
Reif J, Reifová R, Skoracka A, Kuczyński L. Competition-driven niche segregation on a landscape scale: evidence for escaping from syntopy towards allotopy in two coexisting sibling passerine species. J Anim Ecol. 2018;87:774–89.
Article
Google Scholar
Rich LN, Miller DAW, Robinson HS, McNutt JW, Kelly MJ. Carnivore distributions in Botswana are shaped by resource availability and intraguild species. J Zool. 2017;303:90–8.
Article
Google Scholar
Richmond OM, Hines JE, Beissinger SR. Two-species occupancy models: a new parameterization applied to co-occurrence of secretive rails. Ecol Appl. 2010;20:2036–46.
Article
Google Scholar
Ridout MS, Linkie M. Estimating overlap of daily activity patterns from camera trap data. J Agric Biol Environ Stat. 2009;14:322–37.
Article
Google Scholar
Rota CT, Wikle CK, Kays RW, Forrester TD, McShea WJ, Parsons AW, et al. A two-species occupancy model accommodating simultaneous spatial and interspecific dependence. Ecology. 2016;97:48–53.
Article
Google Scholar
Rowcliffe JM. Package activity. Animal activity statistics R Package Version 1.1. 2016.
Rowcliffe JM, Kays R, Kranstauber B, Carbone C, Jansen PA, Fisher D. Quantifying levels of animal activity using camera trap data. Methods Ecol Evol. 2014;5:1170–9.
Article
Google Scholar
Santos F, Carbone C, Wearn OR, Rowcliffe JM, Espinosa S, Lima MGM, et al. Prey availability and temporal partitioning modulate felid coexistence in neotropical forests. PLoS ONE. 2019;14:e0213671.
Article
CAS
Google Scholar
Schuette P, Wagner AP, Wagner ME, Creel S. Occupancy patterns and niche partitioning within a diverse carnivore community exposed to anthropogenic pressures. Biol Conserv. 2013;158:301–12.
Article
Google Scholar
Shu Z, Lyu J, Song X, Huo Z, Chao Z, Chen M, et al. Statistic of the vascular plant specimens from Chebaling National Nature Reserve in Guangdong province. For Environ Sci. 2017;33:61–5 (in Chinese).
Google Scholar
Song XJ, Zou FS. A guide to birds of Chebaling National Nature Reserve. Guangzhou: Guangdong Science and Technology Press; 2017 (in Chinese).
Google Scholar
Steenweg R, Hebblewhite M, Kays R, Ahumada J, Fisher JT, Burton C, et al. Scaling-up camera traps: monitoring the planet’s biodiversity with networks of remote sensors. Front Ecol Environ. 2017;15:26–34.
Article
Google Scholar
Sukumal N, Savini T. Altitudinal differences in habitat use by Siamese fireback Lophura diardi and silver pheasant Lophura nycthemera in Khao Yai National Park, Thailand. Int J Galliformes. Conserv. 2009;1:18–22.
Google Scholar
Tambling CJ, Minnie L, Meyer J, Freeman EW, Santymire RM, Adendorff J, et al. Temporal shifts in activity of prey following large predator reintroductions. Behav Ecol Sociobiol. 2015;69:1153–61.
Article
Google Scholar
Thakur MP, Wright AJ. Environmental filtering, niche construction, and trait variability: the missing discussion. Trends Ecol Evol. 2017;32:884–6.
Article
Google Scholar
Valeix M, Chamaille-Jammes S, Fritz H. Interference competition and temporal niche shifts: elephants and herbivore communities at waterholes. Oecologia. 2007;153:739–48.
Article
Google Scholar
Webb CO, Ackerly DD, McPeek MA, Donoghue MJ. Phylogenies and community ecology. Annu Rev Ecol Evol Syst. 2002;33:475–505.
Article
Google Scholar
Yackulic CB, Reid J, Nichols JD, Hines JE, Davis R, Forsman E. The roles of competition and habitat in the dynamics of populations and species distributions. Ecology. 2014;95:265–79.
Article
Google Scholar
Zhao ZJ. Avifauna of China, volume 1: non-Passerines. Changchun: Jilin Science and Technology Press; 2001 (in Chinese).
Google Scholar
Zheng G. A checklist on the classification and distribution of the birds of China. 3rd ed. Beijing: Science Press; 2017 (in Chinese).
Google Scholar
Zheng G. Pheasants in China. Beijing: Higher Education Press; 2015 (in Chinese).
Google Scholar
Zuckerberg B, Fink D, La Sorte FA, Hochachka WM, Kelling S. Novel seasonal land cover associations for eastern North American forest birds identified through dynamic species distribution modelling. Divers Distrib. 2016;22:717–30.
Article
Google Scholar