Alessio VG, Beltzer AH, Lajmanovich RC, Quiroga M. Ecología alimentaria de algunas especies de Passeriformes (Furnariidae, Tyrannidae, Icteridae y Emberizidae): Consideraciones sobre algunos aspectos del nicho ecológico. In: Aceñolaza FG, editor. Temas de la biodiversidad del Litoral Fluvial Argentino II. Tucumán: Ediciones Magna; 2005. p. 441–82.
Google Scholar
Avalos DS, Mangeaud A, Valladares GR. Parasitism and food web structure in defoliating Lepidoptera—parasitoid communities on soybean. Neotrop Entomol. 2016;45:712–7.
Article
PubMed
CAS
Google Scholar
Azpiroz AB. Aves del Uruguay: Lista e introducción a su biología y conservación. Montevideo: Aves Uruguay-GUPECA; 2001.
Google Scholar
Bates DM, Maechler M, Bolker M, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.
Article
Google Scholar
Beltramo J, Bertolaccini I, González A. Spiders of soybean crops in Santa Fe province, Argentina: influence of surrounding spontaneous vegetation on lot colonization. Braz J Biol. 2006;66:891–8.
Article
PubMed
CAS
Google Scholar
Beltzer AH. Aspectos tróficos de la comunidad de aves de los esteros del Iberá. In: Alvarez BB, editor. Fauna del Iberá. Chaco-Corrientes: Universidad Nacional del Nordeste; 2003. p. 257–71.
Google Scholar
Benton TG, Vickery JA, Wilson JD. Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol. 2003;18:182–8.
Article
Google Scholar
Bernardos JN, Zaccagnini ME, Mineau P, Decarre J, De Carli R. Calculadora de riesgo ecotoxicológico para aves: Sistema soporte de decisiones para el control de plagas con criterios ambientales 3.0. Buenos Aires: INTA; 2007.
Google Scholar
Bibby CJ, Burgess ND, Hill DA, Mustoe SH. Bird census techniques. London: Academic Press; 2000.
Google Scholar
BirdLife International. IUCN Red List for birds. 2013. https://www.birdlife.org. Accessed 30 Aug 2013.
Bortoluzzi A, Aceñolaza P, Aceñolaza F. Caracterización ambiental de la cuenca del arroyo las conchas, provincia de Entre Ríos. In: Aceñolaza FG, editor. Temas de la biodiversidad del litoral fluvial Argentino III. Serie Miscelanea 17. Tucumán: Instituto Superior de Correlacion Geologica; 2008. p. 219–30.
Google Scholar
Boutin C, Freemark KE, Kirk DA. Farmland birds in southern Ontario: field use, activity patterns and vulnerability to pesticide use. Agric Ecosyst Environ. 1999;72:239–54.
Article
Google Scholar
Boutin C, Jobin B. Intensity of agricultural practices and effects on adjacent habitats. Ecol Appl. 1998;8:544–57.
Article
Google Scholar
Bucher EH. The influence of changes in regional land-use patterns on Zenaida Dove populations. In: Pinowsky J, Summers-Smith JD, editors. Granivorous birds in agricultural landscapes. Warsaw: Polish Academy of Sciences; 1990. p. 291–303.
Google Scholar
Burkart R, Bárbaro NO, Sánchez RO, Gómez DA. Eco-regiones de la Argentina. Buenos Aires: Secretaría de Recursos Naturales y Desarrollo Sustentable, Administracion de Parques Nacionales; 1999.
Google Scholar
Burnham KP, Anderson DR. Model selection and multimodel inference: a practical information-theoretic approach. 2nd edn. New York: Springer; 2002.
Google Scholar
Cabrera A. Fitogeografía de la República Argentina. Bol Soc Argent Bot. 1971;14:1–43.
Google Scholar
Calamari NC, Cerezo Blandón A, Canavelli SB, Dardanelli S, Gavier-Pizarro GI, Zaccagnini ME. Long-term association of Tyrannus savana and Sturnella superciliaris density with land cover and climatic variables in agroecosystems of Argentina. EI Hornero. 2016;31:97–112.
Google Scholar
Calamari NC, Canavelli SB, Cerezo A, Dardanelli S, Bernardos JN, Zaccagnini ME. Variations in pest bird density in Argentinean agroecosystems in relation to land use and/or cover, vegetation productivity and climate. Wildlife Res. 2018;45:668–78.
Article
Google Scholar
Calamari NC, Vilella FJ, Sica YV, Mercuri PA. Patch and landscape responses of bird abundance to fragmentation in agroecosystems of east-central Argentina. Avian Conserv Ecol. 2018;13:3.
Article
Google Scholar
Capinera J. Insects and wildlife: arthropods and their relationships with wild vertebrate animals. Hoboken: Wiley-Blackwell; 2010.
Book
Google Scholar
Champlin TB, Kilgo JC, Moorman CE. Food abundance does not determine bird use of early-successional habitat. Ecology. 2009;90:1586–94.
Article
PubMed
Google Scholar
Codesido M, Fischer CG, Bilenca D. Land use patterns and bird assemblages in agroecosystems of the Pampean Region, Argentina. Ornitol Neotrop. 2008;19:575–85.
Google Scholar
Cooch EG, White GC. Program MARK: a gentle introduction, 12th edn. Colorado State University. 2013. https://www.phidot.org/software/mark/docs/book/. Accessed 17 Feb 2013.
De la Peña MR. Reproducción de las aves Argentinas, con descripción de pichones. Buenos Aires: Monografía LOLA; 2005.
Google Scholar
De la Peña MR. Lista distribución aves Santa Fe Entre Ríos. Buenos Aires: Monografía LOLA; 2006.
Google Scholar
Di Giacomo AS, de Casenave JL. Use and importance of crop and field-margin habitats for birds in a neotropical agricultural ecosystem. Condor. 2010;112:283–93.
Article
Google Scholar
Donald PF, Sanderson FJ, Burfield IJ, Van Bommel FPJ. Further evidence of continent-wide impacts of agricultural intensification on European farmland birds, 1990–2000. Agric Ecosyst Environ. 2006;116:189–96.
Article
Google Scholar
Douglas DJT, Vickery JA, Benton TG. Improving the value of field margins as foraging habitat for farmland birds. J Appl Ecol. 2009;46:353–62.
Article
Google Scholar
Duelli P, Studer M, Marchand I, Jakob S. Population movements of arthropods between natural and cultivated areas. Biol Conserv. 1990;54:193–207.
Article
Google Scholar
Elston DA, Moss R, Boulinier T, Arrowsmith C, Lambin X. Analysis of aggregation, a worked example: numbers of ticks on Red Grouse chicks. Parasitology. 2001;122:563–9.
Article
PubMed
CAS
Google Scholar
FAOSTAT. Commodities by country 2011: soybeans. 2013. https://faostat.fao.org. Accessed 18 June 2013.
Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, et al. Solutions for a cultivated planet. Nature. 2011;478:337–42.
Article
PubMed
CAS
Google Scholar
Freemark K, Boutin C. Impacts of agricultural herbicide use on terrestrial wildlife in temperate landscapes: a review with special reference to North America. Agric Ecosyst Environ. 1995;52:67–91.
Article
Google Scholar
Gavier-Pizarro GI, Calamari NC, Thompson JJ, Canavelli SB, Solari LM, Decarre J, et al. Expansion and intensification of row crop agriculture in the Pampas and Espinal of Argentina can reduce ecosystem service provision by changing avian density. Agric Ecosyst Environ. 2012;154:44–55.
Article
Google Scholar
Goijman AP, Conroy MJ, Bernardos JN, Zaccagnini ME. Multi-season regional analysis of multi-species occupancy: implications for bird conservation in agricultural lands in east-central Argentina. PLoS ONE. 2015;10:e0130874.
Article
PubMed
PubMed Central
CAS
Google Scholar
Goijman AP, Zaccagnini ME. The effects of habitat heterogeneity on avian density and richness in soybean fields in Entre Ríos, Argentina. Hornero. 2008;23:67–76.
Google Scholar
Goldstein MI, Lacher TE, Woodbridge B, Bechard MJ, Canavelli SB, Zaccagnini ME, et al. Monocrotophos-induced mass mortality of Swainson’s Hawks in Argentina, 1995–96. Ecotoxicology. 1999;8:201–14.
Article
CAS
Google Scholar
Grass I, Lehmann K, Thies C, Tscharntke T. Insectivorous birds disrupt biological control of cereal aphids. Ecology. 2017;98:1583–90.
Article
PubMed
Google Scholar
Hill RW. Fisiología comparada comparada: un enfoque ambiental. Barcelona: Reverté; 1980.
Google Scholar
Jobin B, Choiniere L, Belanger L. Bird use of three types of field margins in relation to intensive agriculture in Quebec, Canada. Agric Ecosyst Environ. 2001;84:131–43.
Article
Google Scholar
Kirk DA, Eveden MD, Mineau P. Past and current attempts to evaluate the role of birds as predators of insect pests in temperate agriculture. In: Nolan V, Ketterson ED, editors. Current ornithology. New York: Plenum Press; 1996. p. 175–269.
Chapter
Google Scholar
Kirk DA, Park AC, Smith AC, Howes BJ, Prouse BK, Kyssa NG, et al. Our use, misuse and abandonment of a concept: whither habitat? Ecol Evol. 2018;00:1–12.
Google Scholar
Krebs JR, Wilson JD, Bradbury RB, Siriwardena GM. The second silent spring? Nature. 1999;400:611–2.
Article
CAS
Google Scholar
Kross SM, Kelsey TR, McColl CJ, Townsend JM. Field-scale habitat complexity enhances avian conservation and avian-mediated pest-control services in an intensive agricultural crop. Agric Ecosyst Environ. 2016;225:140–9.
Article
Google Scholar
Laake JL. RMark: an R interface for analysis of capture-recapture data with MARK. Seattle: Alaska Fisheries Science Center, NOAA, National Marine Fisheries Service; 2013.
Google Scholar
Lee JC, Menalled FD, Landis DA. Refuge habitats modify impact of insecticide disturbance on carabid beetle communities. J Appl Ecol. 2001;38:472–83.
Article
Google Scholar
MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA. Estimating site occupancy rates when detection probabilities are less than one. Ecology. 2002;83:2248–55.
Article
Google Scholar
MacKenzie DI, Nichols JD, Royle AR, Pollock KH, Bailey LL, Hines JE. Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. Burlington: Elsevier/Academic Press; 2006.
Google Scholar
MacKenzie DI, Nichols JD, Royle JA, Pollock KH, Bailey L, Hines JE. Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. New York: Academic Press; 2017.
Google Scholar
Mineau P. Estimating the probability of bird mortality from pesticide sprays on the basis of the field study record. Environ Toxicol Chem. 2002;21:1497–506.
Article
PubMed
CAS
Google Scholar
Moorman CE, Bowen LT, Kilgo JC, Sorenson CE, Hanula JL, Horn S, et al. Seasonal diets of insectivorous birds using canopy gaps in a bottomland forest. J Field Ornithol. 2007;78:11–20.
Article
Google Scholar
Narosky S, Yzurieta D. Aves de Argentina y Uruguay: Guía de identificación, edición total. Buenos Aires: Vázquez Mazzini Editores; 2010.
Google Scholar
Paruelo JM, Guerschman JP, Verón SR. Expansión agrícola y cambios en el uso del suelo. Ciencia Hoy. 2005;15:14–23.
Google Scholar
Philpott SM, Soong O, Lowenstein JH, Pulido AL, Lopez DT, Flynn DFB, et al. Functional richness and ecosystem services: bird predation on arthropods in tropical agroecosystems. Ecol Appl. 2009;19:1858–67.
Article
PubMed
Google Scholar
R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2013.
Ralph CJ, Geupel GR, Pyle P, Martin TE, DeSante DF, Milá B. Handbook of field methods for monitoring landbirds. Albany: USDA Forest Service General Technical Report PSW-GTR-159; 1996.
Remsen JV Jr, Robinson SK. A classification scheme for foraging behavior of birds in terrestrial habitats. Stud Avian Biol. 1990;13:144–60.
Google Scholar
Robinson RA, Wilson JD, Crick HQP. The importance of arable habitat for farmland birds in grassland landscapes. J Appl Ecol. 2001;38:1059–69.
Article
Google Scholar
Saluso A, Ermancora O, Anglada M, Toledo C, Borghesan C. Principales invertebrados plagas de la soja y tecnicas utilizadas en la toma de decisiones (Campaña agrícola 2006–2007). Rev Cient Agropecu. 2007;11:153–8.
Google Scholar
SIIA. Estimaciones Agrícolas. Datos de la Dirección de Mercados Agrícolas. 2013. https://siia.gov.ar. Accessed 7 Feb 2013.
Solari LM, Zaccagnini ME. Efecto de bordes arboreos y terrazas sobre la riqueza y densidad de aves en lotes de soja de Entre Rios, Argentina. BioScriba. 2009;2:90–100.
Google Scholar
Stamps WT, Dailey TV, Gruenhagen NM, Linit MJ. Soybean yield and resource conservation field borders. Agric Ecosyst Environ. 2008;124:142–6.
Article
Google Scholar
Standen V. The adequacy of collecting techniques for estimating species richness of grassland invertebrates. J App Ecol. 2000;37:884–93.
Article
Google Scholar
Tscharntke T, Clough Y, Wanger TC, Jackson L, Motzke I, Perfecto I, et al. Global food security, biodiversity conservation and the future of agricultural intensification. Biol Conserv. 2012;151:53–9.
Article
Google Scholar
Tyre AJ, Tenhumberg B, Field SA, Niejalke D, Parris K, Possingham HP. Improving precision and reducing bias in biological surveys: estimating false-negative error rates. Ecol Appl. 2003;13:1790–801.
Article
Google Scholar
Varni VD. Efecto de la aplicación de insecticidas sobre artrópodos fitófagos y predadores en cultivos de soja y sus márgenes en Entre Ríos. Buenos Aires: Licenciate Thesis, Universidad de Buenos Aires; 2010.
Weyland F, Zaccagnini ME. Efecto de las terrazas sobre la diversidad de artrópodos caminadores en cultivos de soja. Ecol Aust. 2008;18:357–66.
Google Scholar
Whelan CJ, Şekercioğlu CH, Wenny DG. Bird ecosystem services: economic ornithology for the 21st century. In: Şekercioğlu CH, Wenny DG, Whelan CJ, editors. Why birds matter: avian ecological function and ecosystem services. Chicago: University of Chicago Press; 2016. p. 1–26.
Google Scholar
Whelan CJ, Wenny DG, Marquise RJ. Ecosystem services provided by birds. Conserv Biol. 2008;1134:25–60.
Google Scholar
White GC, Burnham KP. Program MARK: Survival estimation from populations of marked animals. Bird Study. 1999;46:120–39.
Article
Google Scholar
Wiens JA, Rotenberry JT. Habitat associations of shrubsteppe bird communities. Bioscience. 1981;31:240–1.
Article
Google Scholar
Wolda H. Insect seasonality: why? Rev Ecol Syst. 1988;19:1–18.
Article
Google Scholar
Zufiaurre E, Codesido M, Abba AM, Bilenca D. The seasonal role of field characteristics on seed-eating bird abundances in agricultural landscapes. Curr Zool. 2017;63:279–86.
PubMed
Google Scholar