Abraham KF. Breeding site selection of Lesser Snow Geese. PhD Thesis. Kingston, Ontario, Canada: Queen’s University. 1980.
Barraquand F, Benhamou S. Animal movements in heterogeneous landscapes: identifying profitable places and homogeneous movement bouts. Ecology. 2008;89:3336–48.
Article
Google Scholar
Batbayar N, Takekawa JY, Newman SH, Prosser DJ, Natsagdorj T, Xiao X. Migration strategies of Swan Geese Anser cygnoides from northeast Mongolia. Wildfowl. 2013;61:90–109.
Google Scholar
Bates DM, Pinheiro JC. nlme: linear and nonlinear mixed effects models. R package version 3. 1998.
Benhamou S. How to reliably estimate the tortuosity of an animal’s path: straightness, sinuosity, or fractal dimension? J Theor Biol. 2004;229:209–20.
Article
Google Scholar
Black JM, Choudhury S, Owen M. Do geese benefit from life-long monogamy? In: Black JM, editor. Partnerships in birds: the study of monogamy. Oxford: Oxford University Press; 1996. p. 91–117.
Google Scholar
Bunnefeld N, Börger L, van Moorter B, Rolandsen CM, Dettki H, Solberg EJ, Ericsson G. A model-driven approach to quantify migration patterns: individual, regional and yearly differences. J Anim Ecol. 2011;80:466–76.
Article
Google Scholar
Davies JC, Cooke F. Annual nesting productivity in Snow Geese: Prairie droughts and Arctic Springs. J Wildl Manage. 1983;47:291–6.
Article
Google Scholar
Drent R, Ebbinge B, Weijand B. Balancing the energy budgets of arctic-breeding geese throughout the annual cycle: a progress report. Verh Ornithol Ges Bayern. 1978;23:239–64.
Google Scholar
Drent RH, Daan S. The prudent parent: energetic adjustments in avian breeding. Ardea. 1980;68:225–52.
Google Scholar
Drent RH, Fox AD, Stahl J. Travelling to breed. J Ornithol. 2006;147(2):122–34.
Article
Google Scholar
Edelhoff H, Signer J, Balkenhol N. Path segmentation for beginners: an overview of current methods for detecting changes in animal movement patterns. Mov Ecol. 2016;4:21.
Article
Google Scholar
Ely CR, Fox AD, Alisauskas RT, Andreev A, Bromley RG, Degtyarev AG, Ebbinge B, Gurtovaya EN, Kerbes R, Kondratyev AV, et al. Circumpolar variation in morphological characteristics of Greater White-fronted Geese Anser albifrons. Bird Study. 2005;52:104–19.
Article
Google Scholar
Fox A, Francis IS, Bergersen E. Diet and habitat use of Svalbard Pink-footed Geese Anser brachyrhynchus during arrival and pre-breeding periods in Adventdalen. Ardea. 2006;94:691–9.
Google Scholar
Fox AD, Abraham KF. Why geese benefit from the transition from natural vegetation to agriculture. Ambio. 2017;46:188–97.
Article
Google Scholar
Fox AD, Boyd H, Bromley RG. Mutual benefits of associations between breeding and non-breeding White-fronted Geese Anser albifrons. Ibis. 1995;137:151–6.
Article
Google Scholar
Fox AD, Hilmarsson JÓ, Einarsson Ó, Walsh AJ, Boyd H, Kristiansen JN. Staging site fidelity of Greenland White-fronted Geese Anser albifrons flavirostris in Iceland. Bird Study. 2002;49:42–9.
Article
Google Scholar
Fox AD, Madsen J. The pre-nesting behaviour of the Greenland White-fronted Goose. Wildfowl. 1981;32:48–54.
Google Scholar
Fox AD, Weegman MD, Bearhop S, Hilton GM, Griffin L, Stroud DA, Walsh A. Climate change and contrasting plasticity in timing of a two-step migration episode of an Arctic-nesting avian herbivore. Curr Zool. 2014;60:233–42.
Article
Google Scholar
Gauthier G, Bêty J, Hobson KA. Are greater snow geese capital breeders? New evidence from a stable-isotope model. Ecology. 2003;84:3250–64.
Article
Google Scholar
Hijmans RJ, Williams E, Vennes C. Package “Geosphere”. R package version 3. 2017.
Hübner CE, Tombre IM, Griffin LR, Loonen MJJE, Shimmings P, Jónsdóttir IS. The connectivity of spring stopover sites for geese heading to Arctic breeding grounds. Ardea. 2010;98:145–54.
Article
Google Scholar
Hupp J, Ward D, Soto DX, Hobson KA. Spring temperature, migration chronology, and nutrient allocation to eggs in three species of arctic-nesting geese: implications for resilience to climate warming. Global Change Biol. 2018;24:5056–71.
Article
Google Scholar
Jia Q, Koyama K, Choi C-Y, Kim H-J, Cao L, Gao D, Liu G, Fox AD. Population estimates and geographical distributions of swans and geese in East Asia based on counts during the non-breeding season. Bird Conserv Int. 2016;26:397–417.
Article
Google Scholar
Johnson SR, West GC. Fat content, fatty acid composition and estimates of energy metabolism of adélie penguins (Pygoscelis adeliae) during the early breeding season fast. Comp Biochem Phys Part B: Comp Biochem. 1973;45:709–19.
Article
CAS
Google Scholar
Kemp M, Emiel van Loon E, Shamoun-Baranes J, Bouten W. RNCEP: Global weather and climate data at your fingertips. Methods Ecol Evol. 2012;3:65–70.
Article
Google Scholar
Klaassen M, Abraham KF, Jefferies RL, Vrtista M. Factors affecting the site of investment, and the reliance on savings for Arctic breeders: the capital-income dichotomy revisited. Ardea. 2006;94:371–84.
Google Scholar
Klaassen M, Hahn S, Korthals H, Madsen J. Eggs brought in from afar: Svalbard-breeding pink-footed geese can fly their eggs across the Barents Sea. J Avian Biol. 2017;48:173–9.
Article
Google Scholar
Kokko H. Competition for early arrival in migratory birds. J Anim Ecol. 1999;68:940–50.
Article
Google Scholar
Kölzsch A, Bauer S, de Boer R, Griffin L, Cabot D, Exo K-M, van der Jeugd HP, Nolet BA. Forecasting spring from afar? Timing of migration and predictability of phenology along different migration routes of an avian herbivore. J Anim Ecol. 2015;84:272–83.
Article
Google Scholar
Kölzsch A, Müskens GJDM, Kruckenberg H, Glazov P, Weinzierl R, Nolet BA, Wikelski M. Towards a new understanding of migration timing: slower spring than autumn migration in geese reflects different decision rules for stopover use and departure. Oikos. 2016;125:1496–507.
Article
Google Scholar
Köppen U, Yakovlev AP, Barth R, Kaatz M, Berthold P. Seasonal migrations of four individual bar-headed geese Anser indicus from Kyrgyzstan followed by satellite telemetry. J Ornithol. 2010;151:703–12.
Article
Google Scholar
Lavielle M. Using penalized contrasts for the change-point problem. Signal Process. 2005;85:1501–10.
Article
Google Scholar
Le Corre M, Dussault C, Côté SD. Detecting changes in the annual movements of terrestrial migratory species: using the first-passage time to document the spring migration of caribou. Mov Ecol. 2014;2:19.
Article
Google Scholar
McNamara JM, Welham RK, Houston AI. The timing of migration within the context of an annual routine. J Avian Biol. 1998;29:416–23.
Article
Google Scholar
Meijer T, Drent R. Re-examination of the capital and income dichotomy in breeding birds. Ibis. 1999;141:399–414.
Article
Google Scholar
Mohr CO. Table of equivalent populations of North American small mammals. Am Midl Nat. 1947;37:223–49.
Article
Google Scholar
Moore FR, Smith RJ, Sandberg R. Stopover ecology of intercontinental migrants: en route problems and consequences for reproductive performance. In: Greenberg R, Marra PP, editors. Birds of two worlds: the ecology and evolution of migration. Baltimore: Johns Hopkins University Press; 2005. p. 251–61.
Google Scholar
Nilsson C, Klaassen RHG, Alerstam T. Differences in speed and duration of bird migration between spring and autumn. Am Nat. 2013;181:837–45.
Article
Google Scholar
Nuijten RJM, Kölzsch A, van Gils JA, Hoye BJ, Oosterbeek K, de Vries PP, Klaassen M, Nolet BA. The exception to the rule: retreating ice front makes Bewick’s swans Cygnus columbianus bewickii migrate slower in spring than in autumn. J Avian Biol. 2014;45:113–22.
Article
Google Scholar
Perrins CM. The timing of birds’ breeding seasons. Ibis. 1970;112:242–55.
Article
Google Scholar
Polakowski M, Kasprzykowski Z. Differences in the use of foraging grounds by Greylag Goose Anser anser and White-fronted Goose Anser albifrons at a spring stopover site. Avian Biol Res. 2016;9:265–72.
Article
Google Scholar
Polakowski M, Kasprzykowski Z, Golawski A. Influence of temperature on the timing of spring arrival and duration of migration in Arctic goose species at a central European stopover site. Ornis Fenn. 2018;95:32–40.
Google Scholar
Prop J, Black JM, Shimmings P. Travel schedules to the high arctic: barnacle Geese trade-off the timing of migration with accumulation of fat deposits. Oikos. 2003;103:403–14.
Article
Google Scholar
R Development Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2017.
Google Scholar
Rowe L, Ludwig D, Schluter D. Time, condition, and the seasonal decline of avian clutch size. Am Nat. 1994;143:698–722.
Article
Google Scholar
Schmutz JA, Hobson KA, Morse JA. An isotopic assessment of protein from diet and endogenous stores: effects on egg production and incubation behaviour of geese. Ardea. 2006;94:385–97.
Google Scholar
Shariatinajafabadi M, Wang T, Skidmore AK, Toxopeus AG, Kölzsch A, Nolet BA, Exo K-M, Griffin L, Stahl J, Cabot D. Migratory herbivorous waterfowl track satellite-derived green wave index. PLoS ONE. 2014;9:e108331.
Article
Google Scholar
Si Y, Xu Y, Xu F, Li X, Zhang W, Wielstra B, Wei J, Liu G, Luo H, Takekawa J, Balachandran S, Zhang T, de Boer WF, Prins HHT, Gong P. Spring migration patterns, habitat use, and stopover site protection status for two declining waterfowl species wintering in China as revealed by satellite tracking. Ecol Evol. 2018;8:6280–9.
Article
Google Scholar
Sinnott RW. Virtues of the Haversine. Sky Telesc. 1984;68:158.
Google Scholar
Tombre IM, Høgda KA, Madsen J, Griffin LR, Kuijken E, Shimmings P, Rees E, Verscheure C. The onset of spring and timing of migration in two arctic nesting goose populations: the pink-footed goose Anser bachyrhynchus and the barnacle goose Branta leucopsis. J Avian Biol. 2008;39:691–703.
Article
Google Scholar
Van Der Graaf AJ, Stahl J, Klimowska A, Bakker JP, Drent RH. Surfing on a green wave—how plant growth drives spring migration in the Barnacle Goose Branta leucopsis. Ardea. 2006;94:567–77.
Google Scholar
Van Noordwijk AJ, McCleery RH, Perrins CM. Selection for the timing of great tit breeding in relation to caterpillar growth and temperature. J Anim Ecol. 1995;64:451–8.
Article
Google Scholar
van Wijk RE, Kölzsch A, Kruckenberg H, Ebbinge BS, Müskens GJDM, Nolet BA. Individually tracked geese follow peaks of temperature acceleration during spring migration. Oikos. 2012;121:655–64.
Article
Google Scholar
Wang X, Cao L, Bysykatova I, Xu Z, Rozenfeld S, Jeong W, Vangeluwe D, Zhao Y, Xie T, Yi K, Fox AD. The Far East taiga forest: unrecognized inhospitable terrain for migrating Arctic-nesting waterbirds? PeerJ. 2018;6:e4353.
Article
Google Scholar
Yu H, Wang X, Cao L, Zhang L, Jia Q, Lee H, Xu Z, Liu G, Xu W, Hu B, Fox AD. Are declining populations of wild geese in China ‘prisoners’ of their natural habitats? Curr Biol. 2017;27:R376–7.
Article
CAS
Google Scholar
Zhao M, Cong P, Barter M, Fox AD, Cao L. The changing abundance and distribution of Greater White-fronted Geese Anser albifrons in the Yangtze River floodplain: impacts of recent hydrological changes. Bird Conserv Int. 2012;22:135–43.
Article
Google Scholar
Zhao Q, Wang X, Cao L, Fox AD. Why Chinese wintering geese hesitate to exploit farmland. Ibis. 2018;160:703–5.
Article
Google Scholar