Area and species
Observations were carried out in July and September of 2014, July and August of 2017 in Selincuo National Nature Reserve, Tibet, China (30°59′39.79″N, 89°06′49.98″E). The reserve was established in 1993 for protecting rare Tibetan wildlife, including Black-necked Cranes, Snow Leopards (Panthera uncia), Tibetan Antelopes (Pantholops hodgsonii). The area is about 1640 km2, with an average elevation of more than 4700 m asl. The reserve is dominated by the semi-arid monsoon climate with thin air, strong solar radiation, cold and dry climate. The mean temperature is about 8 °C in summer, but the temperature difference is large. Sometimes it can rise up to more than 20 °C at noon, and then drops to 0 °C at night. Summer can be called wet or rainy season since more than 80% of the total annual precipitation falls in summer. The reserve area is primarily alpine meadows dominated by Sophora moorcroftiana, Ceratostigma minus, Aristida triseta, Orinus thoroldii, Pennisetum centrasiaticum, and Stipa purpurea.
Black-necked Cranes have a global population of about 6600 individuals (Yang et al. 2016a, b). Qinghai-Tibet Plateau is their main breeding area, while the wintering areas are mainly in south-central Tibet, the Yunnan-Guizhou Plateau in southwest China, India and Bhutan (Qian et al. 2009; Farrington and Zhang 2013; Khan et al. 2014). Black-necked Cranes migrate from wintering areas to the central part of the Selincuo Nature Reserve in early April, breed and live in the reserve until October. Summer cranes have two social units: family groups and social groups. Family groups consist of two adult cranes and one or two nestlings, while social groups are made up of several juveniles.
Behavioral observations
Every day we drove from a little town Maiba, where we stayed, heading to one of three directions: Xiongmei, Bange, or Shenza, to find the cranes from 9:00 to 18:00. In the process, we recorded every Black-necked Crane that we encountered with focal observation method. After locating the Black-necked Cranes with binoculars (Nikula 8 × 42), a video camera (Nikon D7100) was used for recording. Each group or individual was recorded for about 20 min. We used tripods throughout the recording process to stabilize the cameras. We stopped recording if any visual disturbances occurred, such as passing human vehicles or large grazing herds. During the reproductive season, the cranes are loyal to their territories (Li and Li 2005). So we recorded the GPS information of each family or individual, thus to avoid resampling same individual on a same day (they all have their own certain territory during reproductive season, especially for those families that carry nestlings and were about to have nestlings, so it is basically impossible that one same family was sampled on more than one occasion). Weather, day time, group type and group size were also recorded at the same time. Observations were only made on sunny or cloudy days thus to avoid potential effect of bad weathers.
Data analysis
A focal observation includes a sequence of scans and inter-scans. We totally collected 208 focal samples with a total time of about 2400 min. Samples less than 10 min, or with less than 20 feeding/vigilance transitions, or with visible disturbances were deleted, and thus 100 samples from 55 groups were left. We reviewed all these samples and timed scans and inter-scans to the nearest 1 s.
For instantaneous randomness, we used Kolmogorov–Smirnov test to examine the distribution of inter-scans of each vigilance sequence. We considered the inter-scan intervals were randomly organized if they passed the negative exponential distribution test, and then we calculated its parameter λ, which was the only determinant of the distribution.
Since most sequences of our samples included less than 30 transitions, we tested sequential randomness of inter-scan intervals with nonparametric one-sample runs test (Beauchamp 2006). Median value was set as the cut point. This test was used to assess whether long (> median value) or short (< median value) inter-scans occurred together in the sequence more often than expected by chance. Rejection of random test provides evidence for a nonrandom pattern of vigilance sequence. We also used a generalized linear model to assess whether every inter-scan interval was dependent on the previous scan duration (Pays et al. 2010). The previous scan duration was set as an independent variable. Family or group ID was set as a random factor. For each independent sample, we also used Pearson correlation when data were normally distributed or Spearman rank correlation when data were not normally distributed to evaluate whether the inter-scan intervals and the previous scan durations were closely related (Li et al. 2017).
All statistical analyses were carried out with SPSS (version 20.0). The level of statistical significance was set at p = 0.05, and data were reported as mean ± SE.