Bennett ATD, Cuthill I. Ultraviolet vision in birds: what is its function? Vis Res. 1994;34:1471–8.
Article
CAS
PubMed
Google Scholar
Bevanger K, Berntsen F, Clausen S, Dahl EL, Flagstad Ø, Follestad A, Halley D, Hanssen F, Johnsen L, Kvaløy P, Lund-Hoel P, May RF, Nygård T, Pedersen H-C, Reitan O, Røskaft E, Steinheim Y, Stokke BG, Vang R. Pre- and post-construction studies of conflicts between birds and wind turbines in coastal Norway (BirdWind). Report on findings 2007–2010. Trondheim: Research NIfN; 2010.
Bischof H-J, Niessner C, Peichl L, Wiltschko R, Wiltschko W. Avian UV/violet cones as magnetoreceptors. The problem of separating visual and magnetic information. Commun Integr Biol. 2011;4:713–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blackwell BF, Bernhardt GE. Efficacy of aircraft landing lights in stimulating avoidance behavior in birds. J Wildl Manag. 2004;68:725–32.
Article
Google Scholar
Blackwell BF, DeVault TL, Seamans TW, Lima SL, Baumhardt P, Fernandez-Juricic E. Exploiting avian vision with aircraft lighting to reduce bird strikes. J Appl Ecol. 2012;49:758–66.
Article
Google Scholar
Blackwell BF, Fernandez-Juricic E, Seamans TW, Dolan T. Avian visual system configuration and behavioural response to object approach. Anim Behav. 2009;77:673–84.
Article
Google Scholar
Cole SG. Wind power compensation is not for the birds: an opinion from an environmental economist. Restor Ecol. 2011;19:147–53.
Article
Google Scholar
Cook ASCP, Ross-Smith VH, Roos S, Burton NHK, Beale N, Coleman C, Daniel H, Fitzpatrick S, Rankin E, Norman K, Martin G. Identifying a range of options to prevent or reduce avian collision with offshore wind farms using a UK-based case study. Thetford: British Trust for Ornithology; 2011.
Google Scholar
Doyle JM, Katzner TE, Bloom PH, Ji Y, Wijayawardena BK, DeWoody JA. The genome sequence of a widespread apex predator, the golden eagle (Aquila chrysaetos). PLoS ONE. 2014;9:e95599.
Article
PubMed
PubMed Central
Google Scholar
Drewitt AL, Langston RH. Collision effects of wind-power generators and other obstacles on birds. Ann NY Acad Sci. 2008;1134:233–66.
Article
PubMed
Google Scholar
Furness RW, Wade HM, Masden EA. Assessing vulnerability of marine bird populations to offshore wind farms. J Environ Manag. 2013;119:56–66.
Article
Google Scholar
Gauthreaux SA, Belser CG. Effects of artificial night lighting on migrating birds. In: Rich C, Longcore T, editors. Ecological consequences of artificial night lighting. Washington: Island Press; 2006. p. 67–93.
Google Scholar
Gove B, Langston RHW, McCluskie A, Pullan JD, Scrase I. Wind farms and birds: An updated analysis of the effects of wind farms on birds, and best practice guidance on integrated planning and impact assessment. Strasbourg: Europe Co; 2013.
Google Scholar
Hunt WG, McClure CJW. Do raptors react to ultraviolet light? J Raptor Res. 2015;49:342–3.
Article
Google Scholar
Håstad O, Ernstdotter E, Ödeen A. Ultraviolet vision and foraging in dip and plunge diving birds. Biol Lett. 2005;1:306–9.
Article
PubMed
PubMed Central
Google Scholar
Intergovernmental Panel on Climate Change. IPCC special report on renewable energy sources and climate change mitigation. Cambridge: Cambridge University Press; 2011.
Google Scholar
Jarvis JR, Taylor NR, Prescott NB, Meeks I, Wathes CM. Measuring and modelling the photopic flicker sensitivity of the chicken (Gallus g. domesticus). Vis Res. 2002;42:99–106.
Article
PubMed
Google Scholar
Lehman RN, Kennedy PL, Savidge JA. The state of the art in raptor electrocution research: a global review. Biol Conserv. 2007;136:159–74.
Article
Google Scholar
Lind O, Mitkus M, Olsson P, Kelber A. Ultraviolet vision in birds: the importance of transparent eye media. Proc R Soc Lond B. 2014;281:20132209.
Article
Google Scholar
Marques AT, Batalha H, Rodrigues S, Costa H, Pereira MJR, Fonseca C, Mascarenhas M, Bernardino J. Understanding bird collisions at wind farms: an updated review on the causes and possible mitigation strategies. Biol Conserv. 2014;179:40–52.
Article
Google Scholar
Martin GR. Understanding bird collisions with man-made objects: a sensory ecology approach. Ibis. 2011;153:239–54.
Article
Google Scholar
Martin GR. Through birds’ eyes: insights into avian sensory ecology. J Ornithol. 2012;153:S23–48.
Article
Google Scholar
May RF. A unifying framework for the underlying mechanisms of avian avoidance of wind turbines. Biol Conserv. 2015;190:179–87.
Article
Google Scholar
May R, Reitan O, Bevanger K, Lorentsen SH, Nygard T. Mitigating wind-turbine induced avian mortality: sensory, aerodynamic and cognitive constraints and options. Renew Sustain Energy Rev. 2015;42:170–81.
Article
Google Scholar
May R, Gill AB, Köppel J, Langston RHW, Reichenbach M, Scheidat M, Smallwood S, Voigt CC, Hüppop O, Portman M. Future research directions to reconcile wind turbine–wildlife interactions. In: Köppel J, editor. Wind energy and wildlife interactions: presentations from the CWW2015 conference. Cham: Springer; 2017. p. 255–76.
Chapter
Google Scholar
Osorio D, Vorobyev M. A review of the evolution of animal colour vision and visual communication signals. Vision Res. 2008;48:2042–51.
Article
CAS
PubMed
Google Scholar
Ödeen A, Håstad O. The phylogenetic distribution of ultraviolet sensitivity in birds. BMC Evol Biol. 2013;13:36.
Article
PubMed
PubMed Central
Google Scholar
Ödeen A, Håstad O, Alström P. Evolution of ultraviolet vision in shorebirds (Charadriiformes). Biol Lett. 2010;6:370–4.
Article
PubMed
Google Scholar
Ödeen A, Håstad O, Alström P. Evolution of ultraviolet vision in the largest avian radiation—the passerines. BMC Evol Biol. 2011;11:313.
Article
PubMed
PubMed Central
Google Scholar
Poot H, Ens BJ, de Vries H, Donners MAH, Wernand MR, Marquenie JM. Green light for nocturnally migrating birds. Ecol Soc. 2008;13:47.
Article
Google Scholar
R Core Team. Team: R: a language and environment for statistical computing. Vienna: R Foundation for Statistical, Computing; 2015.
Google Scholar
van Langevelde F, Ettema JA, Donners M, WallisDeVries MF, Groenendijk D. Effect of spectral composition of artificial light on the attraction of moths. Biol Conserv. 2011;144:2274–81.
Article
Google Scholar
Wiltschko R, Munro U, Ford H, Stapput K, Thalau P, Wiltschko W. Orientation of migratory birds under ultraviolet light. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2014;200:399–407.
Article
PubMed
Google Scholar
Young DP Jr, Erickson WP, Strickland MD, Good RE, Sernka KJ. Comparison of avian responses to UV-light-reflective paint on wind turbines. Subcontract report July 1999–December 2000. Golden: National Renewable Energy Laboratory; 2003.
Book
Google Scholar