Able KP. The orientation of passerine nocturnal migrants following offshore drift. Auk. 1977;94:320–30.
Google Scholar
Able KP. Common themes and variations in animal orientation systems. Am Zool. 1991;31:157–67.
Article
Google Scholar
Åkesson S. Do passerines captured at an inland ringing site perform reverse migration in autumn? Ardea. 1999;87:129–38.
Google Scholar
Åkesson S, Sandberg R. Migratory orientation of passerines at dusk, night and dawn. Ethology. 1994;98:177–91.
Article
Google Scholar
Åkesson S, Bäckman J. Orientation in pied flycatchers: the relative importance of magnetic and visual information at dusk. Anim Behav. 1999;57:819–28.
Article
PubMed
Google Scholar
Åkesson S, Hedenström A. Wind selectivity of migratory flight departures in birds. Behav Ecol Sociobiol. 2000;47:140–4.
Article
Google Scholar
Åkesson S, Karlsson L, Walinder G, Alerstam T. Bimodal orientation and the occurrence of temporary reverse bird migration during autumn in south Scandinavia. Behav Ecol Sociobiol. 1996a;38:293–302.
Article
Google Scholar
Åkesson S, Alerstam T, Hedenström A. Flight initiation of nocturnal passerine migrants in relation to celestial orientation conditions at twilight. J Avian Biol. 1996b;27:95–102.
Article
Google Scholar
Alerstam T. Optimal bird migration revisited. J Ornithol. 2011;152(Suppl 1):5–23.
Article
Google Scholar
Alerstam T, Gudmundsson GA, Jönsson PE, Karloson J, Linström Å. Orientation, migration routes and flight behaviour of Knots, Turnstones and Brant Geese departing from Iceland in spring. Arctic. 1990;43:201–14.
Article
Google Scholar
Bai QQ, Chen JZ, Chen ZH, Dong GT, Dong JT, Dong WX, Fu YQ, Han YX, Lu G, Li J, Liu Y, Lin Z, Meng DR, Martinez J, Ni GH, Shan K, Sun RJ, Tian SX, Wang FQ, Xu ZW, Yu RD, Yang J, Yang ZD, Zhang L, Zhang M, Zeng XW. Identification of coastal wetlands of international importance for waterbirds: a review of China Coastal Waterbird Surveys 2005–2013. Avian Res. 2015;6:12.
Article
Google Scholar
Bamford M, Watkins D, Bancroft W, Tischler G, Wahl J. Migratory shorebirds of the East Asian-Australasian Flyway: population estimates and internationally important sites. Canberra: Wetlands International, Oceania; 2008.
Google Scholar
Batschelet E. Circular statistics in biology. London: Academic Press; 1981.
Google Scholar
Battley PF. The northward migration of Arctic waders in New Zealand: departure behaviour, timing and possible migration routes of red knots and bar-tailed godwits from Farewell Spit. North-West Nelson. Emu. 1997;97:108–20.
Google Scholar
Battley PF, Piersma T, Dietz MW, Tang S, Dekinga A, Hulsman K. Empirical evidence for differential organ reductions during trans-oceanic bird flight. Proc R Soc B. 2000;267:191–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berthold P. Control of bird migration. London: Chapman and Hall; 1996.
Google Scholar
Burnham KP, Anderson DR. Model selection and inference: a practical information-theoretic approach. 2nd ed. New York: Springer; 2002.
Google Scholar
Choi CY, Gan XJ, Ma Q, Zhang KJ, Chen JK, Ma ZJ. Body condition and fuel deposition patterns of calidrid sandpipers during migratory stopover. Ardea. 2009;97:61–70.
Article
Google Scholar
Choi CY, Battley PF, Potter MA, Ma ZJ, Melville DS, Sukkaewmanee P. How migratory shorebirds selectively exploit prey at a staging site dominated by a single prey species. Auk. 2017;134:76–91.
Article
Google Scholar
Covino KM, Holberton RL. The influence of energetic condition on flight initiation and orientation of migratory songbirds in the Gulf of Maine region. Auk. 2011;128:313–20.
Article
Google Scholar
Deutschlander ME, Muheim R. Fuel reserves affect migratory orientation of thrushes and sparrows both before and after crossing an ecological barrier near their breeding grounds. J Avian Biol. 2009;40:85–9.
Article
Google Scholar
Emlen ST, Emlen JT. A technique for recording orientation of captive birds. Auk. 1966;83:361–7.
Article
Google Scholar
Fransson T, Jakobsson S, Johansson P, Kullberg C, Lind J, Vallin A. Magnetic cues trigger extensive refuelling. Nature. 2001;414:35–6.
Article
CAS
PubMed
Google Scholar
Fusani L, Cardinale M, Carere C, Goymann W. Stopover decision during migration: physiological conditions predict nocturnal restlessness in wild passerines. Biol Lett. 2009;5:302–5.
Article
PubMed
PubMed Central
Google Scholar
Grönroos J, Muheim R, Åkesson S. Orientation and autumn migration routes of juvenile sharp-tailed sandpipers at a staging site in Alaska. J Exp Biol. 2010;213:1829–35.
Article
PubMed
Google Scholar
Gudmundsson GA, Sandberg R. Sanderlings (Calidris alba) have a magnetic compass: orientation experiments during spring migration in Iceland. J Exp Biol. 2000;203:3137–44.
CAS
PubMed
Google Scholar
Gwinner E. Circadian and circannual programmes in avian migration. J Exp Biol. 1996;99:39–48.
Google Scholar
Hedenström A, Alerstam T. Climbing performance of migrating birds as a basis of estimating limits for fuel-carrying capacity and muscle work. J Exp Biol. 1992;164:19–38.
Google Scholar
Henshaw I, Fransson T, Jakobsson S, Kullberg C. Geomagnetic field affects spring migratory direction in a long distance migrant. Behav Ecol Sociobiol. 2010;64:1317–23.
Article
Google Scholar
Henshaw I, Fransson T, Jakobsson S, Lind J, Vallin A, Kullberg C. Food intake and fuel deposition in a migratory bird is affected by multiple as well as single-step changes in the magnetic field. J Exp Biol. 2008;211:649–53.
Article
PubMed
Google Scholar
Kullberg C, Henshaw I, Jakobsson S, Johansson P, Fransson T. Fuelling decisions in migratory birds: geomagnetic cues override the seasonal effect. Proc R Soc B. 2007;274:2145–51.
Article
PubMed
PubMed Central
Google Scholar
Liechti F. Birds: Blowin’ by the wind? J Ornithol. 2006;147:202–11.
Article
Google Scholar
Landys MM, Wingfield JC, Ramenofsky M. Plasma corticosterone increases during migratory restlessness in the captive white-crowned sparrow Zonotrichia leucophrys gambelli. Horm Behav. 2004a;46:574–81.
Article
CAS
PubMed
Google Scholar
Landys MM, Piersma T, Ramenofsky M, Wingfield JC. Role of the low-affinity glucocorticoid receptor in the regulation of behavior and energy metabolism in the migratory red knot Calidris canutus islandica. Physiol Biochem Zool. 2004b;77:658–68.
Article
CAS
PubMed
Google Scholar
Lisovski S, Gosbell K, Hassell C, Minton C. Tracking the full annual-cycle of the great knot Calidris tenuirostris, a long-distance migratory shorebird of the East Asian-Australasian Flyway. Wader Study. 2016;123:177–89.
Article
Google Scholar
Lõhmus M, Sandberg R, Holberton RL, Moore FR. Corticosterone levels in relation to migratory readiness in red-eyed vireos (Vireo olivaceus). Behav Ecol Sociobiol. 2003;54:233–9.
Article
Google Scholar
Ma ZJ, Hua N, Zhang X, Guo HQ, Zhao B, Ma Q, Xue WJ, Tang CD. Wind conditions affect stopover decisions and fuel stores of shorebirds migrating through the south Yellow Sea. Ibis. 2011;153:755–67.
Article
Google Scholar
Ma ZJ, Hua N, Peng HB, Choi CY, Battley PF, Zhou QY, Chen Y, Ma Q, Jia N, Xue WJ, Bai QQ, Wu W, Feng XS, Tang CD. Differentiating between stopover and staging sites: functions of the southern and northern Yellow Sea for long-distance migratory shorebirds. J Avian Biol. 2013;44:504–12.
Google Scholar
Mouritsen H. Redstarts, Phoenicurus phoenicurus, can orient in a true-zero magnetic field. Anim Behav. 1998;55:1311–24.
Article
CAS
PubMed
Google Scholar
Mouritsen H, Feenders G, Hegemann A, Liedvogel M. Thermal paper can replace typewriter correction paper in Emlen funnels. J Ornithol. 2009;150:713–5.
Article
Google Scholar
Muheim R, Åkesson S, Alerstam T. Compass orientation and possible migration routes of passerine birds at high arctic latitude. Oikos. 2003;103:341–9.
Article
Google Scholar
Newton I. The migration ecology of birds. London: Academic Press; 2008.
Google Scholar
Norberg RÅ, Norberg UM. Take-off, landing, and flight speed during fishing flights of Gavia stellata (Pont.). Ornis Scand. 1971;2:55–67.
Article
Google Scholar
Peng HB, Hua N, Choi C, Melville DS, Gao Y, Zhou QY, Chen Y, Xue WJ, Ma Q, Wu W. Adjusting migration schedules at stopping sites: time strategy of a long-distance migratory shorebird during northward migration. J Ornithol. 2015;156:191–9.
Article
Google Scholar
Piersma T, Jukema J. Budgeting the flight of a long distance migrant: changes in nutrient levels of Bar-tailed Godwits at successive spring staging sites. Ardea. 1990;78:315–37.
Google Scholar
Piersma T, Zwarts L, Bruggemann JH. Behavioural aspects of the departure of waders before long-distance flights: flocking, vocalizations, flight paths and diurnal timing. Ardea. 1990;78:157–84.
Google Scholar
Prater AJ, Marchant JH, Vuorinen J. Guide to the identification and ageing of Holarctic waders. BTO field guide 17. Tring: British Trust for Ornithology; 1977.
Google Scholar
Richardson WJ. Northeastward reverse migration of birds over Nova Scotia, Canada, in autumn. Behav Ecol Sociobiol. 1982;10:193–206.
Article
Google Scholar
Sandberg R. Stored fat and the migratory orientation of birds. In: Berthold P, Gwinner E, Sonnenschein E, editors. Avian migration. Berlin: Springer; 2003. p. 515–25.
Chapter
Google Scholar
Sandberg R, Gudmundsson GA. Orientation cage experiments with dunlins during autumn migration in Iceland. J Avian Biol. 1996;27:183–8.
Article
Google Scholar
Sandberg R, Pettersson J, Alerstam T. Why do migrating robins, Erithacus rubecula, captured at two nearby stopover sites orient differently? Anim Behav. 1988;36:865–76.
Article
Google Scholar
Sandberg R, Moore FR, Bäckman J, Lõhmus M. Orientation of nocturnally migrating Swainson’s Thrush at dawn and dusk: importance of energetic condition and geomagnetic cues. Auk. 2002;119:201–9.
Article
Google Scholar
Tsvey A, Bulyuk VN, Kosarev V. Influence of body condition and weather on departures of first-year European robins, Erithacus rubecula, from an autumn migratory stopover site. Behav Ecol Sociobiol. 2007;61:1665–74.
Article
Google Scholar
Tulp I, McChesney S, de Goeij P. Migratory departures of waders from north-western Australia: behaviour, timing and possible migration routes. Ardea. 1994;82:201–21.
Google Scholar
Yong W, Moore FR. Relation between migratory activity and energetic condition among thrushes (Turdinae) following passage across the Gulf of Mexico. Condor. 1993;95:934–43.
Article
Google Scholar