Antonov A, Stokke BG, Fossøy F, Ranke PS, Liang W, Yang C, Moksnes A, Shykoff J, Røskaft E. Are cuckoos maximizing egg mimicry by selecting host individuals with better matching egg phenotypes? PLoS ONE. 2012;7:e31704.
Article
CAS
PubMed
PubMed Central
Google Scholar
Avilés J, Møller AP. How is host egg mimicry maintained in the cuckoo (Cuculus canorus)? Biol J Linn Soc. 2004;82:57–68.
Article
Google Scholar
Avilés JM, Stokke BG, Moksnes A, Røskaft E, ÅSmul A, Møller AP. Rapid increase in cuckoo egg matching in a recently parasitized reed warbler population. J Evol Biol. 2006;19:1901–10.
Article
PubMed
Google Scholar
Avilés JM, Vikan JR, Fossøy F, Antonov A, Moksnes A, Røskaft E, Shykoff JA, Møller AP, Stokke BG. Egg phenotype matching by cuckoos in relation to discrimination by hosts and climatic conditions. Proc R Soc B: Biol Sci. 2012;279:1967–76.
Article
Google Scholar
Brooke MDL, Davies NB. A failure to demonstrate host imprinting in the cuckoo (Cuculus canorus) and alternative hypotheses for the maintenance of egg mimicry. Ethology. 1991;89:154–66.
Article
Google Scholar
Brooke ML, Davies NB. Egg mimicry by cuckoos Cuculus canorus in relation to discrimination by hosts. Nature. 1988;335:630–2.
Article
Google Scholar
Caves EM, Stevens M, Iversen ES, Spottiswoode CN. Hosts of avian brood parasites have evolved egg signatures with elevated information content. Proc R Soc B Biol Sci. 2015;282:20150598.
Article
Google Scholar
Chance EP. The truth about the cuckoo. London: Country Life Ltd.; 1940.
Google Scholar
Cherry MI, Bennett ATD, Moskát C. Do cuckoos choose nests of great reed warblers on the basis of host egg appearance? J Evol Biol. 2007;20:1218–22.
Article
CAS
PubMed
Google Scholar
Davies N, Brooke MDL. Cuckoos versus reed warblers: adaptations and counteradaptations. Anim Behav. 1988;36:262–84.
Article
Google Scholar
Davies NB. Cuckoos, cowbirds and other cheats. London: T & AD Poyser; 2000.
Google Scholar
Davies NB. Cuckoo adaptations: trickery and tuning. J Zol. 2011;284:1–14.
Article
Google Scholar
Feeney WE, Welbergen JA, Langmore NE. The frontline of avian brood parasite-host coevolution. Anim Behav. 2012;84:3–12.
Article
Google Scholar
Feeney WE, Welbergen JA, Langmore NE. Advances in the study of coevolution between avian brood parasites and their hosts. Annu Rev Ecol Evol Syst. 2014;45:227–46.
Article
Google Scholar
Fossøy F, Antonov A, Moksnes A, Røskaft E, Vikan JR, Møller AP, Shykoff JA, Stokke BG. Genetic differentiation among sympatric cuckoo host races: males matter. Proc R Soc B Biol Sci. 2011;278:1639–45.
Article
Google Scholar
Fossøy F, Sorenson MD, Liang W, Ekrem T, Moksnes A, Moller AP, Rutila J, Roskaft E, Takasu F, Yang C, Stokke BG. Ancient origin and maternal inheritance of blue cuckoo eggs. Nat Commun. 2016;7:10272. doi:10.1038/ncomms10272.
Article
PubMed
PubMed Central
Google Scholar
Gibbs HL, Sorenson MD, Marchetti K, Brooke MDL, Davies NB, Nakamura H. Genetic evidence for female host-specific races of the common cuckoo. Nature. 2000;407:183–6.
Article
CAS
PubMed
Google Scholar
Gosler AG, Barnett PR, Reynolds SJ. Inheritance and variation in eggshell patterning in the great tit Parus major. Proc R Soc B: Biol Sci. 2000;267:2469–73.
Article
CAS
Google Scholar
Grim T. Why is mimicry in cuckoo eggs sometimes so poor? J Avian Biol. 2002;33:302–5.
Article
Google Scholar
Hauber ME, Moskát C, Bán M. Experimental shift in hosts’ acceptance threshold of inaccurate-mimic brood parasite eggs. Biol Lett. 2006;2:177–80.
Article
PubMed
PubMed Central
Google Scholar
Honza M, Moksnes A, Røskaft E, Stokke B. How are different common cuckoo Cuculus canorus egg morphs maintained? An evaluation of different hypotheses. Ardea. 2001;89:341–52.
Google Scholar
Honza M, Šulc M, Jelínek V, Požgayová M, Procházka P. Brood parasites lay eggs matching the appearance of host clutches. Proc R Soc B Biol Sci. 2014;281:20132665.
Article
Google Scholar
Honza M, Taborsky B, Taborsky M, Teuschl Y, Vogl W, Moksnes A, Røskaft E. Behaviour of female common cuckoos, Cuculus canorus, in the vicinity of host nests before and during egg laying: a radiotelemetry study. Anim Behav. 2002;64:861–8.
Article
Google Scholar
Igic B, Cassey P, Grim T, Greenwood DR, Moskát C, Rutila J, Hauber ME. A shared chemical basis of avian host-parasite egg colour mimicry. Proc R Soc B Biol Sci. 2011;279:1068–79.
Article
Google Scholar
Jelínek V, Procházka P, Požgayová M, Honza M. Common Cuckoos Cuculus canorus change their nest-searching strategy according to the number of available host nests. Ibis. 2014;156:189–97.
Article
Google Scholar
Kilner R. The evolution of egg colour and patterning in birds. Biol Rev. 2006;81:383–406.
Article
CAS
PubMed
Google Scholar
Kleven O, Moksnes A, Røskaft E, Rudolfsen G, Stokke BG, Honza M. Breeding success of common cuckoos Cuculus canorus parasitising four sympatric species of Acrocephalus warblers. J Avian Biol. 2004;35:394–8.
Article
Google Scholar
Landini G. 2011. Auto local threshold. http://fiji.sc/Auto_Local_Threshold. Accessed 27 Apr 2016.
López-de-Hierro MD, Moreno-Rueda G. Egg-spot pattern rather than egg colour affects conspecific egg rejection in the house sparrow (Passer domesticus). Behav Ecol Soc. 2010;64:317–24.
Article
Google Scholar
Li D, Zhang Z, Grim T, Liang W, Stokke BG. Explaining variation in brood parasitism rates between potential host species with similar habitat requirements. Evol Ecol. 2016;30:905–23.
Article
CAS
Google Scholar
Liang G, Yang C, Wang L, Liang W. Variation in parasitism rates by Common Cuckoos among three populations of the Oriental Reed Warblers. Sichuan J Zool. 2014;33:673–7 (In Chinese).
Google Scholar
Liang W, Yang C, Takasu F. Modeling the cuckoo’s brood parasitic behavior in the presence of egg polymorphism. J Ethol. 2016;34:127–32.
Article
Google Scholar
Lotem A, Nakamura H, Zahavi A. Constraints on egg discrimination and cuckoo-host co-evolution. Anim Behav. 1995;49:1185–209.
Article
Google Scholar
Marchetti K, Nakamura H, Gibbs HL. Host-race formation in the common cuckoo. Science. 1998;282:471–2.
Article
CAS
PubMed
Google Scholar
Medina I, Troscianko J, Stevens M, Langmore NE. Brood parasitism is linked to egg pattern diversity within and among species of Australian passerines. Am Nat. 2016;187:351–62.
Article
PubMed
Google Scholar
Moksnes A, Røskaft E. Egg-morphs and host preference in the common cuckoo (Cuculus canorus): an analysis of cuckoo and host eggs from European museum collections. J Zool. 1995;236:625–48.
Article
Google Scholar
Moksnes A, Røskaft E, Braa AT, Korsnes L, Lampe HM, Pedersen HC. Behavioural responses of potential hosts towards artificial cuckoo eggs and dummies. Behaviour. 1991;116:64–89.
Article
Google Scholar
Moskát C, Honza M. European Cuckoo Cuculus canorus parasitism and host’s rejection behaviour in a heavily parasitized Great Reed Warbler Acrocephalus arundinaceus population. Ibis. 2002;144:614–22.
Article
Google Scholar
Moskát C, Székely T, Cuthill IC, Kisbenedek T. Hosts’ responses to parasitic eggs: which cues elicit hosts’ egg discrimination? Ethology. 2008;114:186–94.
Article
Google Scholar
Moskát C, Zölei A, Bán M, Elek Z, Tong L, Geltsch N, Hauber ME. How to spot a stranger’s egg? A mimicry-specific discordancy effect in the recognition of parasitic eggs. Ethology. 2014;120:616–26.
Article
Google Scholar
Nakamura H, Miyazawa Y, Kashiwagi K. Behavior of radio-tracked Common Cuckoo females during the breeding season in Japan. Ornithol Sci. 2005;4:31–41.
Article
Google Scholar
Øien IJ, Moksnes A, Røskaft E. Evolution of variation in egg color and marking pattern in European passerines: adaptations in a coevolutionary arms race with the cuckoo Cuculus canorus. Behav Ecol. 1995;6:166–74.
Article
Google Scholar
Orians GH, Røskaft E, Beletsky LD. Do brown-headed cowbirds lay their eggs at random in the nests of red-winged blackbirds? Wilson Bull. 1989;101:599–605.
Google Scholar
Payne RB. The ecology of brood parasitism in birds. Ann Rev Ecol Syst. 1977;8:1–28.
Article
Google Scholar
Polačiková L, Grim T. Blunt egg pole holds cues for alien egg discrimination: experimental evidence. J Avian Biol. 2010;41:111–6.
Article
Google Scholar
Polačiková L, Honza M, Procházka P, Topercer J, Stokke BG. Colour characteristics of the blunt egg pole: cues for recognition of parasitic eggs as revealed by reflectance spectrophotometry. Anim Behav. 2007;74:419–27.
Article
Google Scholar
Polačiková L, Stokke B, Procházka P, Honza M, Moksnes A, Røskaft E. The role of blunt egg pole characteristics for recognition of eggs in the song thrush (Turdus philomelos). Behaviour. 2010;147:465–78.
Article
Google Scholar
Polačiková L, Takasu F, Stokke B, Moksnes A, Røskaft E, Cassey P, Hauber M, Grim T. Egg arrangement in avian clutches covaries with the rejection of foreign eggs. Anim Cogn. 2013;16:819–28.
Article
PubMed
Google Scholar
Rothstein SI. A model system for coevolution: avian brood parasitism. Ann Rev Ecol Syst. 1990;21:481–508.
Article
Google Scholar
Soler JJ, Aviles JM, Soler M, Møller AP. Evolution of host egg mimicry in a brood parasite, the great spotted cuckoo. Biol J Linn Soc. 2003;79:551–63.
Article
Google Scholar
Soler M. Long-term coevolution between avian brood parasites and their hosts. Biol Rev. 2014;89:688–704.
Article
PubMed
Google Scholar
Soler M, Pérez-Contreras T, Soler JJ. Synchronization of laying by great spotted cuckoos and recognition ability of magpies. J Avian Biol. 2015;46:608–15.
Article
Google Scholar
Spottiswoode CN, Stevens M. Visual modeling shows that avian host parents use multiple visual cues in rejecting parasitic eggs. PNAS. 2010;107:8672–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spottiswoode CN, Stevens M. Host-parasite arms races and rapid changes in bird egg appearance. Am Nat. 2012;179:633–48.
Article
PubMed
Google Scholar
Stoddard MC, Kilner RM, Town C. Pattern recognition algorithm reveals how birds evolve individual egg pattern signatures. Nat Commun. 2014;5:4117.
Article
CAS
PubMed
Google Scholar
Stoddard MC, Stevens M. Pattern mimicry of host eggs by the common cuckoo, as seen through a bird’s eye. Proc R Soc B Biol Sci. 2010;277:1387–93.
Article
Google Scholar
Stoddard MC, Stevens M. Avian vision and the evolution of egg color mimicry in the common cuckoo. Evolution. 2011;65:2004–13.
Article
PubMed
Google Scholar
Stokke BG, Hafstad I, Rudolfsen G, Bargain B, Beier J, Bigas Campàs D, Dyrcz A, Honza M, Leisler B, Pap PL, Patapavičius R, Procházka P, Schulze-Hagen K, Thomas R, Moksnes A, Pape Møller A, Røskaft E, Soler M. Host density predicts presence of cuckoo parasitism in reed warblers. Oikos. 2007;116:913–22.
Article
Google Scholar
Šulc M, Procházka P, Capek M, Honza M. Common cuckoo females are not choosy when removing an egg during parasitism. Behav Ecol. 2016. doi:10.1093/beheco/arw08.
Google Scholar
Underwood TJ, Sealy SG. Parameters of brown-headed cowbird Molothrus ater egg discrimination in warbling vireos Vireo gilvus. J Avian Biol. 2006;37:457–66.
Article
Google Scholar
Wyllie I. The cuckoo. London: Batsford; 1981.
Google Scholar
Yang C, Li D, Wang L, Liang G, Zhang Z, Liang W. Geographic variation in parasitism rates of two sympatric cuckoo hosts in China. Zool Res. 2014;35:67–71.
PubMed
PubMed Central
Google Scholar
Yang C, Huang Q, Wang L, Jiang A, Stokk BG, Fossøy F, Tunheim OH, Røskaft E, Liang W, Møller AP. Plaintive cuckoos do not select tailorbird hosts that match the phenotypes of their own eggs. Behav Eocl. 2015a;138:275–9.
Google Scholar
Yang C, Liang W. The role of blinded methods in the studies of animal behavior. Chin J Zool. 2016;51:663–7 (In Chinese).
Google Scholar
Yang C, Liang W, Cai Y, Shi S, Takasu F, Møller AP, Antonov A, Fossøy F, Moksnes A, Røskaft E, Stokke BG. Coevolution in action: disruptive selection on egg colour in an avian brood parasite and its host. PLoS ONE. 2010;5:e10816.
Article
PubMed
PubMed Central
Google Scholar
Yang C, Takasu F, Liang W, Moller A. Why cuckoos should parasitize parrotbills by laying eggs randomly rather than laying eggs matching the egg appearance of parrotbill hosts? Avian Res. 2015b;6:5.
Article
Google Scholar
Yang C, Wang L, Liang W, Møller AP. Do common cuckoos (Cuculus canorus) possess an optimal laying behaviour to match their own egg phenotype to that of their Oriental reed warbler (Acrocephalus orientalis) hosts? Biol J Linn Soc. 2016;117:422–7.
Article
Google Scholar