Bicudo JE, Vianna CR, Chaui-Berlinck JG. Thermogenesis in birds. Biosci Rep. 2001;21:181–8.
Article
CAS
PubMed
Google Scholar
Brand MD, Turner N, Ocloo A, Else PL, Hulbert AJ. Proton conductance and fatty acyl composition of liver mitochondria correlates with body mass in birds. Biochem J. 2003;376:741–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brookes PS, Buckingham JA, Tenreiro AM, Hulbert AJ, Brand MD. The proton permeability of the inner membrane of liver mitochondria from ectothermic and endothermic vertebrates and from obese rats: correlations with standard metabolic rate and phospholipid fatty acid composition. Comp Biochem Phys B. 1998;119:325–34.
Article
CAS
Google Scholar
Chappell MA, Bech C, Buttemer WA. The relationship of central and peripheral organ masses to aerobic performance variation in house sparrows. J Exp Biol. 1999;202:2269–79.
PubMed
Google Scholar
Clapham JC. Central control of thermogenesis. Neuropharmacology. 2012;63:111–23.
Article
CAS
PubMed
Google Scholar
Daan S, Masman D, Groenewold A. Avian basal metabolic rates: their association with body composition and energy expenditure in nature. Am J Physiol. 1990;259:R333–40.
CAS
PubMed
Google Scholar
Dridi S, Onagbesan O, Swennen Q, Buyse J, Decuypere E, Taouis M. Gene expression, tissue distribution and potential physiological role of uncoupling protein in avian species. Comp Biochem Phys A. 2004;139:273–83.
Article
Google Scholar
Else PL, Brand MD, Turner N, Hulbert AJ. Respiration rate of hepatocytes varies with body mass in birds. J Exp Biol. 2004;207:2305–11.
Article
PubMed
Google Scholar
Estabrook RW. Mitochondrial respiratory control and the polarographic measurement of ADP: O ratio. Method Enzymol. 1967;10:41–7.
Article
CAS
Google Scholar
Furness RW. It’s in the genes. Nature. 2003;425:479–80.
Article
Google Scholar
Guderley H, Turner N, Else PL, Hulbert AJ. Why are some mitochondria more powerful than others: insights from comparisons of muscle mitochondria from three terrestrial vertebrates. Comp Biochem Phys A. 2005;142:172–80.
Article
Google Scholar
Hammond KA, Chappell MA, Cardullo RA, Lin RS, Johnsen TS. The mechanistic basis of aerobic performance variation in red jungle fowl. J Exp Biol. 2000;203:2053–64.
CAS
PubMed
Google Scholar
Hammond KA, Szewczak J, Krόl E. Effects of altitude and temperature on organ phenotypic plasticity along an altitudinal gradient. J Exp Biol. 2001;204:1991–2000.
CAS
PubMed
Google Scholar
Hill RW. Determination of oxygen consumption by use of the paramagnetic oxygen analyzer. J Appl Physiol. 1972;33:261–3.
CAS
PubMed
Google Scholar
Kersten M, Piersma T. High levels of energy expenditure in shorebirds; metabolic adaptations to an energetically expensive way of life. Ardea. 1987;75:175–87.
Google Scholar
Li YG, Yang ZC, Wang DH. Physiological and biochemical basis of basal metabolic rates in Brandt’s voles (Lasiopodomys brandtii) and Mongolian gerbils (Meriones unguiculatus). Comp Biochem Phys A. 2010;157:204–11.
Article
Google Scholar
Liknes ET, Swanson DL. Phenotypic flexibility of body composition associated with seasonal acclimatization in passerine birds. J Ther Biol. 2011;36:363–70.
Article
Google Scholar
Lindström Å, Klaassen M. High basal metabolic rates in shorebirds: a circumpolar view. Condor. 2003;105:420–7.
Article
Google Scholar
Liu JS, Li M. Phenotypic flexibility of metabolic rate and organ masses among tree sparrows Passer montanus in seasonal acclimatization. Acta Zool Sin. 2006;52:469–77.
Google Scholar
Liu JS, Zhang ZY, Ma H, Hou ZS. Characteristics of resting metabolic rate in little bunting (Emberiza pusilla) and chestnut bunting (E. rutila). Acta Zool Sin. 2001;47:347–50.
Google Scholar
Liu JS, Wang DH, Wang Y, Chen MH, Song CG, Sun RY. Energetics and thermoregulation of the Carpodacus roseus, Fringilla montifringilla and Acanthis flammea. Acta Zool Sin. 2004;50:357–63.
Google Scholar
Liu JS, Chen YQ, Li M. Thyroid hormones increase liver and muscle thermogenic capacity in the little buntings (Emberiza pusilla). J Therm Biol. 2006;31:386–93.
Article
CAS
Google Scholar
Liu JS, Li M, Shao SL. Seasonal changes in thermogenic properties of liver and muscle in tree sparrows Passer montanus. Acta Zool Sin. 2008;54:777–84.
CAS
Google Scholar
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with Folin phenol reagent. J Biol Chem. 1951;193:265–75.
CAS
PubMed
Google Scholar
Lv JW, Xie ZL, Sun YR, Sun CR, Liu LR, Yu TF, Xu XJ, Shao SL, Wang CH. Seasonal plasticity of duodenal morphology and histology in Passer montanus. Zoomorphology. 2014;133:435–43.
Article
Google Scholar
MacKinnon J, Phillipps K. A field guide to the birds of China. London: Oxford University Press; 2000.
Google Scholar
Marsh RL, Dawson WR, Camilliere JJ, Olson JM. Regulation of glycolysis in the pectoralis muscles of seasonally acclimatized American goldfinches exposed to cold. Am J Physiol. 1990;258:R711–7.
CAS
PubMed
Google Scholar
McKechnie AE. Phenotypic flexibility in basal metabolic rate and the changing view of avian physiological diversity: a review. J Comp Phys B. 2008;178:235–47.
Article
Google Scholar
McKechnie AE, Freckleton RP, Jetz W. Phenotypic plasticity in the scaling of avian basal metabolic rate. Proc R Soc B Biol Sci. 2006;273:931–7.
Article
Google Scholar
McKinney RA, McWilliams SR. A new model to estimate daily energy expenditure for wintering waterfowl. Wilson Bull. 2005;117:44–55.
Article
Google Scholar
McNab BK. The relationship among flow rate, chamber volume and calculated rate of metabolism in vertebrate respirometry. Comp Biochem Phys A. 2006;145:287–94.
Article
Google Scholar
McNab BK. Ecological factors affect the level and scaling of avian BMR. Comp Biochem Phys A. 2009;152:22–45.
Article
Google Scholar
Mullur R, Liu YY, Brent GA. Thyroid hormone regulation of metabolism. Physiol Rev. 2014;94:355–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Piersma T, Bruinzeel L, Drent R, Kersten M, Van der Meer J, Wiersma P. Variability in basal metabolic rate of a long-distance migrant shorebird (Red Knot, Calidris canutus) reflects shifts in organ sizes. Physiol Zool. 1996;69:191–217.
Article
Google Scholar
Pitit M, Vézina F. Phenotype manipulations confirm the role of pectoral muscles and haematocrit in avian maximal thermogenic capacity. J Exp Biol. 2014;217:824–30.
Article
Google Scholar
Rasmussen UF, Vielwerth SE, Rasmussen VH. Skeletal muscle bioenergetics: a comparative study of mitochondria isolated from pigeon pectoralis, rat soleus, rat biceps brachii, pig biceps femoris and human quadriceps. Comp Biochem Phys A. 2004;137:435–46.
Article
Google Scholar
Rolfe DF, Brown GC. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev. 1997;77:731–58.
CAS
PubMed
Google Scholar
Schmidt-Nielsen K. Animal physiology: adaptation and environment. London: Cambridge University Press; 1997.
Google Scholar
Scott I, Evans PR. The metabolic output of avian (Sturnus vulgaris, Calidris alpina) adipose tissue, liver and skeletal muscle: implications for BMR/body massrelationships. Comp Biochem Phys A. 1992;103:329–32.
Article
CAS
Google Scholar
Smit B, McKechnie AE. Avian seasonal metabolic variation in a subtropical desert: basal metabolic rates are lower in winter than in summer. Funct Ecol. 2010;24:330–9.
Article
Google Scholar
Steyermark AC, Miamen AG, Feghahati HS, Lewno AW. Physiological and morphological correlates of among-individual variation in standard metabolic rate in the leopard frog Rana pipiens. J Exp Biol. 2005;208:1201–8.
Article
PubMed
Google Scholar
Sundin U, Moore G, Nedergaard J, Cannon B. Thermogenin amount and activity in hamsterbrown fat mitochondria: effect of cold acclimation. Am J Physiol. 1987;252:R822–32.
CAS
PubMed
Google Scholar
Swanson DL. Seasonal metabolic variation in birds: functional and mechanistic correlates. In: Thompson CF, editor. Current ornithology. Berlin: Springer; 2010. p. 75–129.
Google Scholar
Swanson DL, Zhang YF, Liu JS, Merkord CL, King MO. Relative roles of temperature and photoperiod as drivers of metabolic flexibility in dark-eyed juncos. J Exp Biol. 2014;217:866–75.
Article
CAS
PubMed
Google Scholar
Villarin JJ, Schaeffer PJ, Markle RA, Lindstedt SL. Chronic cold exposure increases liver oxidative capacity in the marsupial Monodelphis domestica. Comp Biochem Phys A. 2003;136:621–30.
Article
Google Scholar
Weathers WW. Energetics and thermoregulation by small passerines of the humid, lowland tropics. Auk. 1997;114:341–53.
Article
Google Scholar
Wells ME, Schaeffer PJ. Seasonality of peak metabolic rate in non-migrant tropical birds. J Avian Biol. 2012;43:481–5.
Article
Google Scholar
Wiersma P, Muñoz-Garcia A, Walker A, Williams JB. Tropical birds have a slow pace of life. Proc Natl Acad Sci. 2007;104:9340–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wikelski M, Spinney L, Schelsky W, Scheuerlein A, Gwinner E. Slow pace of life in tropical sedentary birds: a common-garden experiment on four stonechat populations from different latitudes. Proc R Soc B Biol Sci. 2003;270:2383–8.
Article
Google Scholar
Williams J, Tieleman BI. Flexibility in basal metabolic rate and evaporative water loss among hoopoe larks exposed to different environmental temperatures. J Exp Biol. 2000;203:3153–9.
CAS
PubMed
Google Scholar
Wu MS, Xiao YC, Yang F, Zhou LM, Zheng WH, Liu JS. Seasonal variation in body mass and energy budget in Chinese bulbuls (Pycnonotus sinensis). Avian Res. 2014;5:4.
Article
Google Scholar
Wu MX, Zhou LM, Zhao LD, Zhao ZJ, Zheng WH, Liu JS. Seasonal variation in body mass, body temperature and thermogenesis in the Hwamei, Garrulax canorus. Comp Biochem Phys A. 2015;179:113–9.
Article
CAS
Google Scholar
Yen PM. Physiological and molecular basis of thyroid hormone action. Physiol Rev. 2001;81:1097–142.
CAS
PubMed
Google Scholar
Zheng WH, Liu JS, Jang XH, Fang YY, Zhang GK. Seasonal variation on metabolism and thermoregulation in Chinese bulbul. J Therm Biol. 2008a;33:315–9.
Article
Google Scholar
Zheng WH, Li M, Liu JS, Shao SL. Seasonal acclimatization of metabolism in Eurasian tree sparrows (Passer montanus). Comp Biochem Phys A. 2008b;151:519–25.
Article
Google Scholar
Zheng WH, Lin L, Liu JS, Xu XJ, Li M. Geographic variation in basal thermogenesis in little buntings: relationship to cellular thermogenesis and thyroid hormone concentrations. Comp Biochem Phys A. 2013a;164:240–6.
Article
Google Scholar
Zheng WH, Lin L, Liu JS, Pan H, Cao MT, Hu YL. Physiological and biochemical thermoregulatory responses of Chinese bulbuls Pycnonotus sinensis to warm temperature: phenotypic flexibility in a small passerine. J Therm Biol. 2013b;38:483–90.
Article
Google Scholar
Zheng WH, Liu JS, Swanson DL. Seasonal phenotypic flexibility of body mass, organ masses, and tissue oxidative capacity and their relationship to RMR in Chinese bulbuls. Physiol Biochem Zool. 2014a;87:432–44.
Article
PubMed
Google Scholar
Zheng WH, Li M, Liu JS, Shao SL, Xu XJ. Seasonal variation of metabolic thermogenesis in Eurasian tree sparrows Passer montanus over a latitudinal gradient. Physiol Biochem Zool. 2014b;87:704–18.
Article
PubMed
Google Scholar
Zhou LM, Xia SS, Chen Q, Wang RM, Zheng WH, Liu JS. Phenotypic flexibility of thermogenesis in the Hwamei (Garrulax canorus): responses to cold acclimation. Am J Physiol. 2016;310:R330–6.
Article
Google Scholar