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Behaviour of cranes (family Gruidae) mirrors 
their phylogenetic relationships
Nela Nováková*   and Jan Robovský   

Abstract 

Background:  The behavioural repertoire of every species evolved over time and its evolution can be traced through 
the phylogenetic relationships in distinct groups. Cranes (family Gruidae) represent a small, old, monophyletic group 
with well-corroborated phylogenetic relationships on the species level, and at the same time they exhibit a complex 
and well-described behavioural repertoire.

Methods:  We therefore investigated the evolution of behavioural traits of cranes in a phylogenetic context using 
several phylogenetic approaches and two types of trait scoring. The cranes exhibit more than a hundred behavioural 
displays, almost one third of which may be phylogenetically informative.

Results:  More than half of the analysed traits carry a significant phylogenetic signal. The ancestor of cranes already 
exhibited a quite complex behavioural repertoire, which remained unchanged in Balearicinae but altered greatly in 
Gruinae, specifically by the shedding of traits rather than their creation. Trait scoring has an influence on results within 
the Gruinae, primarily in genera Bugeranus and Anthropoides.

Conclusions:  Albeit the behavioural traits alone cannot be used for resolving species-level relationships within the 
Gruidae, when optimized on molecular tree, they can help us to detect interesting evolutionary transformations of 
behaviour repertoire within Gruiformes. The Limpkin (Aramus guarauna) seems to be the most enigmatic species and 
should be studied in detail for its behavioural repertoire, which may include some precursors of crane behavioural 
traits.
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Background
Behavioural traits have been traditional sources of phy-
logenetic information along with morphological data (de 
Queiroz and Wimberger 1993; Kusmierski et  al. 1997; 
Gatesy et  al. 1999), even though a behavioural reper-
toire was often believed to be highly adaptive. Currently, 
behavioural data together with morphological data are 
being replaced by much more extensive molecular data, 
which exhibit lower rates of homoplasy and better tree 
resolution due to a higher number of informative char-
acters (Scotland et  al. 2003). Additionally, molecular 

methods have been routinely applicable and have become 
much cheaper, while the complete description of the 
behavioural repertoire requires months and years of 
effort, and the homology of some traits remains uncer-
tain. The use of behavioural data combined with phylo-
genetic analysis has decreased in recent years (Price et al. 
2011). Nevertheless, this combination of behavioural data 
and phylogenetic analysis allows us to study the evolu-
tion of behaviour in a phylogenetic context and thus, in 
the unprecedented detail the evolution of specific behav-
ioural traits or the whole repertoire (Senter 2008; Duda 
and Zrzavý 2013; Lister 2014; Ligon et al. 2018; Ericson 
et al. 2020).

It is already documented that behaviour often carries 
significant phylogenetic signal (Prum 1990; de Queiroz 
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and Wimberger 1993; McLennan and Mattern 2001; Ren-
dall and Di Fiore 2007; Scholes III 2008; Miles and Fux-
jager 2019), which could allow behavioural traits to be 
used for supporting particular nodes as well, especially 
where data subsets produce conflicting support (Gatesy 
et al. 1999). Nevertheless, there is a strong inequality in 
majority of the works in the number of inspected behav-
ioural traits compared to morphological or molecular 
data, as behavioural traits are rarely covered in datasets 
(Paterson et  al. 1995; Kennedy et  al. 1996; Blomberg 
et  al. 2003; Ligon et  al. 2018). Additionally, behavioural 
data allow us to reconstruct the ancestral behavioural 
repertoire for particular groups (Cap et  al. 2002; Lister 
2014), which is an important task if we are to under-
stand how behaviour has evolved over time with regard 
to the homoplasy and adaptive potential of behaviour 
for the particular groups (Lefebvre et  al. 2016; Downs 
et  al. 2019; Penndorf and Aplin 2020). The behavioural 
traits have proven to be at least as good as the morpho-
logical data, for example in displays of manakins, which 
are completely congruent with their syringeal anatomy 
(Prum 1990). The usefulness of behaviour for phylogeny 
estimation was also supported by de Queiroz and Wim-
berger (1993), who combined and analysed multiple 
datasets against each other and found that morphological 
data did not prove to be better than behavioural. Simi-
larly, as in the case of five genera in the Gasterosteidae 
fish family, where both morphological and behavioural 
data produced the same topology and the total evidence 
data provided a robust phylogeny (McLennan and Mat-
tern 2001). Same results occurred in the case of toucans 
and barbets, it was proven that the body size can predict 
their mating behaviour and vice versa, and that mating 
behaviour can catalyse diversification (Miles and Fux-
jager 2019).

We identified several promising groups for inspection 
of the evolution of behaviour in a phylogenetic context 
and comparison of behavioural traits with other data 
sets—for example, Anatidae (Lorenz 1941; Johnsgard 
1962, 1965; Livezey 1991), Gruidae (for detail see below), 
Bovidae [e.g. Walther (1984)—for preliminary assessment 
see Vrba and Schaller (2000); Deleporte and Cap (2014)]. 
Some datasets have been analysed in pioneering works — 
e.g. Felidae [Mattern and McLennan (2000), with poten-
tial additions of traits from Hemmer (1966); Leyhausen 
(1979); Sunquist and Sunquist (1996)], Macropodiformes 
(Ganslosser 1993, 1995); Pipridae (Prum 1990, 1994, 
1998)—and could benefit from revising the phylogeny of 
specific groups associated with the denser taxa sampling 
and/or more (molecular) data available. Cranes (Grui-
dae) seemed to be excellent candidates for such detailed 
inspection of the evolution of behavioural traits in a phy-
logenetic context, as they represent a small, old group 

with well-corroborated phylogenetic relationships on 
the species level, and with a complex and well-described 
behavioural repertoire.

Specifically, cranes form a monophyletic group with 
the deepest separation between Balearicinae and Grui-
nae estimated at some 31–37 million years ago, with 
well-supported relationships among particular species 
(Gaubert et  al. 2005; Krajewski et  al. 2010; Krajewski 
2019). Their closest relatives are the family Aramidae, 
then the family Psophiidae and the family Rallidae (Prum 
et  al. 2015). Ellis et  al. (1998) published a complete 
homologized sociogram of impressive and complex 
behaviour. Nevertheless, these unique data have neither 
been combined with molecular data for the detection of 
phylogenetic signals in a behavioural repertoire nor ana-
lysed for the evolution of specific behaviour traits under 
phylogenetic control.

Cranes are tall, omnivorous birds inhabiting wetlands 
and grasslands worldwide, except for Antarctica and 
South America, and number only 15 species (Johnsgard 
1983). Eleven crane species are threatened with extinc-
tion, according to the IUCN Red list, including one spe-
cies that is critically endangered, three species that are 
endangered, and six species that are vulnerable (Harris 
and Mirande 2013; IUCN 2021). Some of them migrate 
seasonally over great distances (e.g. Grus grus), some 
migrate only altitudinally (e.g. Grus paradisea), and some 
do not migrate (e.g. Balearica spp.), in conformity with 
ecological parameters of the inhabited regions (John-
sgard 1983; Prange 2016). All cranes are monogamous 
with stable pairs and lay a small clutch of no more than 
three eggs (Johnsgard 1983). The pairs are created and 
maintained through complex dances, accompanied by 
calls performed by both partners (Johnsgard 1983). Fre-
quency of pair dances and thus harmonization of the pair 
affects their reproductive success (Takeda et  al. 2019). 
Cranes also exhibit a system of social postures, displays, 
and other activities as feeding habits or alerts, made up of 
at least 60 behavioural characters (Ellis et al. 1998; Panov 
et al. 2010). Dances are usually completed with a vocali-
zation. Archibald (1976) assumed phylogeny of cranes 
based on unison calls of different species and succeeded 
in dividing cranes into subfamilies Balearicinae and Grui-
nae and proposed three genera: Anthropoides, Grus, and 
Bugeranus. Besides pair dances, even unpaired subadults 
exhibit dancing behaviour. It is considered that dancing 
facilitates socialization and pair formation as displace-
ment activity or play behaviour (Dinets 2013). Further-
more, certain displays may be related to dominance as 
performed by singletons in wintering flocks (Takeda 
et al. 2018). The closest relative of the family Gruidae is 
the Limpkin (Aramus guarauna), which is a snail spe-
cialist living in the wetlands of Florida, the Caribbean, 
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and Central and South America (Fain et  al. 2007). The 
behavioural repertoire of Limpkin is not well explored, 
although it is assumed that they show some crane-like 
displays (Bryan and Kirwan 2018). For the other out-
group, Purple Swamphen (Porphyrio porphyrio) was cho-
sen. It belongs to the family Rallidae, which is sister clade 
to the Limpkin and crane lineages (Gong et al. 2017).

In this study we attempt to inspect the evolution of 
cranes in a phylogenetic context, using these approaches: 
(1) reconstruction of ancestral behavioural repertoire of 
all cranes and their particular groups and the identifica-
tion of behavioural evolutionary novelties; (2) estimation 
of phylogenetic informativeness and phylogenetic signal 
in the behavioural repertoire of cranes using the phylo-
genetic control based on mitochondrial genomes; (3) 
comparison of the influence of various scorings of behav-
ioural traits on reconstruction of ancestral behavioural 
repertoire and its phylogenetic informativeness.

Methods
Behavioural data
In this study, all 15 species of cranes recognised by all 
latest reviews (e.g. Johnsgard 1983; Harris and Mirande 
2013; Prange 2016) were analysed (see names in Fig.  1, 
or in Additional file  1: Table  S1). We used a complete 
sociogram from the study of Ellis et  al. (1998) in which 
all behavioural traits observed in the cranes are speci-
fied and scored. The complete sociogram contains 107 
behavioural traits, including vocalization (17 characters), 
agonistic displays (32 characters), and parental behaviour 

(13 characters). As some behavioural traits are exhibited 
by all species or by only one species, the total number 
of possibly phylogenetically informative characters was 
28, composed of vocalization (2 characters), agonistic 
behaviour (23 characters), and pair-related behaviour (3 
characters). Names of all inspected specific behavioural 
traits and their abbreviations are specified in Table 1; for 
a compressed description of individual traits, see Addi-
tional file 1: Table S1; the original data are presented in 
Ellis et  al. (1998). The original scoring from the socio-
gram was accepted and transformed into a numerical 
matrix in this way: 0 = absent, 1 = occurring occasionally, 
2 = occurring regularly, 3 = occurring often, 4 = occur-
ring very often, NA = undocumented. We also created a 
binary version of the matrix containing only information 
about the presence/absence of inspected traits (Addi-
tional file 1: Table S2).

Genetic data
To control behavioural traits for phylogeny, we used 
complete sequences of mitochondrial genomes of all 15 
species of cranes (Krajewski et  al. 2010) and available 
mitochondrial sequences for the Limpkin (Boast et  al. 
2019) and the Purple Swamphen which we used as the 
outgroups (Fain et  al. 2007; García-R et  al. 2014). Cur-
rently, the mitochondrial genome is the only genetic data 
source available for all crane species [Krajewski (2019); 
our inspection of GenBank database]. All the sequences 
were gathered from GenBank (https://​www.​ncbi.​nlm.​nih.​

Fig. 1  Distribution of behavioural traits with strong phylogenetic signal across the phylogeny. The phylogenetic tree contains numbers of 
recognized nodes. Traits are presented by letter codes (for full names see Table 1). Codes for multi-state characters: 0 = absent, 1 = occurring 
occasionally, 2 = occurring regularly, 3 = occurring often, 4 = occurring very often, crossed white area = undocumented

https://www.ncbi.nlm.nih.gov/
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gov/; table of access numbers of analysed species is avail-
able in Additional file 1: Table S3).

Phylogenetic analysis
Sequences were aligned in Geneious® 10.1.3 (© 
2005‒2017 Biomatters Ltd.) using global alignment. The 
best-fitting substitution model of DNA sequence evo-
lution—the Tamura-Nei 1993 model—was selected by 
MEGA X [ver. 10.0.5; Kumar et  al. (2018)] under the 
Akaike Information Criterion. Maximum likelihood and 
Bootstrap analyses with 10,000 replications were also 
conducted in MEGA X [ver. 10.0.5; Kumar et al. (2018)]. 
Since the topology of the phylogenetic tree of cranes was 
identical to the time-calibrated tree of Krajewski et  al. 

(2010, 2019), we used the branch lengths from Krajewski 
et al. (2010). Phylogenetic tree of cranes based strictly on 
molecular data was then imported in nexus format and 
paired with the matrix of behavioural traits into Mes-
quite ver. 3.40. History of characters was traced using 
likelihood methods. The same tree with branch lengths 
created in MEGA X was also exported into R version 
3.5.1 (©2009‒2018 RStudio, Inc). The strength of the 
phylogenetic signal of individual traits was evaluated by 
calculation of Pagel’s lambda, which allows a more com-
plex model of evolution with strong (lambda = 1) to weak 
(lambda = 0) phylogenetic covariation, and Blomberg’s 
K, which is a widely used metric to test the phylogenetic 
signal, using the “phylosig” function in the phylosignal 

Table 1  List of studied traits with their code names, Pagel’s lambda and Blomberg’s K values and consistency index for both multi-
state (λ) and binary (B-λ) data

Significant values are in underlined italics. Non-underlined italics are the values which are less similar than would be assumed under Brownian motion. For the 
calculation of Blomberg’s K Brownian motion model was selected for all the traits

Display Code name λ B-λ K B-K CI B-CI

Vocalizations
Location call LC 0.99 0.51 0.5

Copulatory call CC 0.99 0.48 0.61 0.61 1 1

Agonistic displays
Iris expansion IE 0.99 0.99 0.30 0.30 0.5 0.5

Feather tuft erection FTE 6 × e−5 0.37 0.43

Gular expansion GE 0.99 0.99 0.48 0.55 0.67 0.5

Head rub HR 0.99 1.31 0.75

Tertial elevation TE 0.87 5 × e−5 0.57 0.64 0.5 0.5

Pre strut PS 0.99 0.61 1

Strut S 0.99 0.62 0.5

Head flick HF 0.99 0.99 0.73 0.57 0.6 0.33

Dorsal preen DP 0.99 0.32 0.67

Ventral preen VP 0.99 0.99 0.35 0.35 1 1

Bill down hold BDH 6 × e−5 0.26 0.67

Bill down growl BDG 0.99 0.99 0.40 0.58 1 1

Bill down sweep BDS 0.99 7 × e−05 0.45 0.49 0.5 0.33

Blow bubbles BB 0.99 0.99 0.24 0.33 0.67 0.5

Head lower ruffle HLR 0.99 0.99 0.81 0.64 0.67 0.5

Ruffle bow RB 0.99 6 × e−05 0.63 0.64 0.75 0.5

Wing spread hold WSH 0.99 0.99 0.41 0.60 0.67 0.5

Wing spread flap WSF 6 × e−5 6 × e−05 0.54 0.47 0.33 0.33

Tail wag TW 0.99 0.99 0.81 0.64 0.67 0.5

Catapult C 0.99 0.99 0.80 1.39 1 1

Butterfly B 0.99 0.99 0.93 0.96 1 1

Hoover or neck crane HNC1 0.99 0.99 1.92 3.28 0.67 1

Crouch CR 0.87 0.33 0.4

Pair related behaviour
Run flap glide RFG 0.99 0.99 0.35 0.35 1 1

Hoover or neck crane HNC2 0.99 0.99 3.07 3.07 0.5 1

Bill stab BS 0.99 0.99 0.63 0.35 0.75 1

https://www.ncbi.nlm.nih.gov/
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package (Keck et  al. 2016). Blomberg’s K allows us to 
evaluate a strong phylogenetic signal (K > 1) as well as 
non-random diversification of trait (K = 0), or whether 
a trait evolved according to the Brownian model of evo-
lution (K = 1), which means that trait evolved indepen-
dently on evolution. Additionally, all the results were 
tested if statistically significant (p < 0.05). Behavioural 
traits were visualized on the tree by the “phylo.heatmap” 
function in the phytools package (Revell 2012), while 
the synapomorphies were mapped over the tree using 
the Map Characters function in the WinClada program, 
ver. 1.00.08 (K. Nixon©1999–2002), which was used for 
basic assessment of informativeness (consistency index, 
hereafter abbreviated as CI) of the behavioural trait sub-
set too [also using NONA version 2.0; Goloboff (1999)]. 
This package was used as well to compare behavioural 
traits with morphological characters (cf. de Queiroz and 
Wimberger 1993), using the matrix compiled by Livezey 
(1998; specifically using his matrix from Appendix  2). 
The same comparisons were performed with a multistate 
matrix as well as with a binary matrix.

Results
Phylogenetic informativeness of behavioural traits
Firstly, all 28 possibly phylogenetically informative behav-
ioural characters alone cannot be used for resolving spe-
cies-level relationships within the Gruidae. Specifically, 
the strict consensus and bootstrap methods detected no 
supported clade within cranes. Only the majority consen-
sus identified these six clades with stronger support: both 
Balearica species are grouped together in 94% of cases, 
Bugeranus with Antropoides with 86%, and both these 
groups form one major clade with 70% support. The sec-
ond major clade with 58% support consists of Antigone 
canadensis, Leucogeranus and all species of the genus 
Grus. Inside the last group with the 78% support Grus 
japonensis stands aside, while other Grus species form its 
sister group with 89% support. From these relationships 
only several subgroups are concordant with the topology 
based on mitochondrial genome—the subgroup compris-
ing Balearica species, Bugeranus with Antropoides, and 
all species of the genus Grus (with G. japonensis sister to 
other Grus species) respectively.

In contrast, 48 possibly phylogenetically informative 
morphological characters provide higher resolution, 
specifically the support for Balearica, Anthropoides and 
Antigone vipio-rubicunda-antigone clades under the 
strict consensus and these groups plus Gruinae and Leu-
cogeranus-Antigone-Grus clades under the bootstrap. The 
majority consensus has a full resolution identical with the 
original study (Fig. 5 in Livezey 1998).

Moreover, behavioural traits under phylogenetic con-
trol exhibited predominantly (82%) a strong phylogenetic 

signal (Table  1) when applicated on phylogenetic tree 
based on genetic data. Support values for the phyloge-
netic tree used in the analyses are listed in Additional 
file 2: Table S4.

Pagel’s lambda together with Blomberg’s K and CI for 
inspected behavioural traits are specified in Table 1. The 
values indicate that the evolution of one third of them 
(e.g. Hoover or neck crane of both types or Head rub) 
was quite conservative and closely related to phylogeny. 
Traits mapped on the tree along with node numbers are 
shown in Fig. 1.

Reconstruction of ancestral behavioural repertoire
The reconstruction of specific behavioural trait evolution 
was predominantly well-resolved across the whole phy-
logenetic tree. The following text describes the evolution 
of the traits for the individual nodes. Unique changes in 
behaviour are displayed in Fig. 2. See detailed likelihoods 
of individual multi-state trait states in ancestors in Addi-
tional file 2: Table S4.

Node 1: The ancestral crane (Gruidae) appears to 
exhibit the following behaviour to some extent: 
Bare-skin-present (BSP), Bare-skin-expansion (BSE), 
Feather-tuft-erection (FTE), Head-rub (HR), Ter-
tial-elevation (TE), Prestrut (PS), Strut (S), Head-
flick (HF), Dorsal-preen (DP), Ventral-preen (VP), 
Bill-down-hold (BDH), Bill-down-growl (BDG), 
Bill-down-sweep (BDS), Blow-bubbles (BB), Head-
lower-ruffle (HLR), Ruffle-bow (RB), Wing-spread-
flap (WSF), Tail-wag (TW), Hoover or neck-crane of 
both types (HNC1 and HNC2), Crouch (CR) Run-
flap-glide (RFG), Bill-stab (BS), and Shading (SH).
Node 3: The ancestor of Gruinae probably exhibited 
Ventral-preen (VP) and Run-flap-glide (RFG), at 
the same intensity of performance. Tertial-elevation 
(TE), Bill-down-growl (BDG) and Bill-stab (BS) in 
different levels of intensity appear to be typical for 
those ancestors.
Node 5: In the common ancestor of three Antigone 
species (A. antigone, A. rubicunda and A. vipio) 
Gular-expansion (GE) and Catapult (C) appeared. 
Catapult is a display presented exclusively in these 
three species.
Node 9: The ancestor of genera Bugeranus and 
Anthropoides probably lost these behavioural traits: 
Tertial-elevation (TE), and Hoover or neck-crane 
of both types (HNC1 and HNC2). On the contrary, 
Head-lower-ruffle (HLR), Wing-spread-hold (WSP), 
and Tail-wag (TW) likely re-appeared in this group.
Node 11: All Grus species perform exclusively Copu-
latory call (CC). Only species of genus Grus except G. 
japonensis perform Butterfly (B).
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In summary, ancestral cranes already exhibited quite a 
rich behavioural repertoire, including sophisticated epig-
amic behaviour, and only a minority of the traits changed 
during subsequent evolution.

The influence of various scoring of traits on reconstruction 
of ancestral behavioural repertoire and its phylogenetic 
informativeness
General features of phylogenetic signal and ancestral 
reconstruction of specific behavioural traits under the 
binary scoring were similar to the results obtained using 
the multistate coding; strong phylogenetic signal was 
detected in a lesser amount, i.e. 71% of traits (Table  1). 

Number of changes, Pagel’s lambda together with 
Blomberg’s K and CI for inspected behavioural traits are 
specified in Table  1. The evolution of traits is displayed 
in Fig.  3 and the traits are also mapped on the tree in 
Fig.  1. The reconstruction of ancestral behaviour reper-
toire detected these associations; see detailed likelihoods 
of individual traits coded binary on particular nodes in 
Additional file 3: Table S5.

Node 4: Bill-down-sweep (BDS) disappeared in the 
genera Antigone, Anthropoides, Bugeranus and Grus.
Node 6: Catapult (C) and Gular-expansion appeared 
in genus Antigone, except for A. canadensis.

Fig. 2  Crane phylogeny based on complete mtDNA with mapped non-homoplasious (black) and homoplasious (white) a changes of multi-state 
behavioural characters. Traits are presented by letter codes (for full names see Table 1). Codes for multi-state characters: 0 = absent, 1 = occurring 
occasionally, 2 = occurring regularly, 3 = occurring often, 4 = occurring very often. Arrows indicate direction of change in specific trait (e.g. 1 to > 2 
means that trait changed in given node from occurring occasionally to occurring regularly)
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Node 9: Tertial-elevation (TE), Ruffle-bow (RB), 
and Hoover or neck-crane of both types (HNC1 
and HNC2) disappeared. Head-lower-ruffle (HLR), 
Wing-spread-hold (WSH) and Tail-wag (TW) 
appeared in genera Bugeranus and Anthropoides.
Node 11: Copulatory call (CC) evolved in genus 
Grus.
Node 12: Butterfly (B) posture appeared in genus 
Grus, except for G. japonensis.

The Balearicinae did not obtain or lose any exclusive 
trait, but the traits in Gruinae changed as the subfamily 
diversified. Contrary to the multi-state data matrix, the 
most changes happened in the genera Bugeranus and 
Anthropoides.

Mean CI value for behavioural traits was 0.69 for 
multistate and 0.70 for binary variant. Mean CI value 
for morphological matrix under the same mitochondrial 

phylogenetic control 0.75 (binary version was not per-
formed due the nature of traits) shows no significant dif-
ference to mean CI obtained for the multistate variant of 
behavioural traits (t-test, p = 0.36).

Discussion
Phylogenetic informativeness of behavioural traits
The present behavioural matrix with 15 crane spe-
cies and 28 behavioural traits is compatible by size with 
many studies reviewed by de Queiroz and Wimberger 
(1993) in their inspection of usefulness of behaviour for 
phylogeny estimation. The detected level of homoplasy 
(mean CI value 0.69 for multistate and 0.70 for binary 
variants) in the behavioural traits of cranes inspected in 
this study seems to be rather lower than values (mean CI 
value 0.84) for similar data sets reviewed by de Queiroz 
and Wimberger (1993), but otherwise fully within the 
range of reviewed studies [CI values from 0.62 to 1; de 

Fig. 3  Crane phylogeny based on complete mtDNA with mapped non-homoplasious (black) and homoplasious (white) changes of binary 
behavioural characters. Traits are presented by letter codes (for full names see Table 1). Codes for binary characters: 0 = absent, 1 = present
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Queiroz and Wimberger (1993)]. The level of homoplasy 
in inspected behavioural data is a little bit lower than 
in morphological data (CI 0.75), but there is no signifi-
cant difference between them. Behavioural repertoire of 
cranes itself is not able to provide robust and reliable 
phylogenetic relationships, probably because of small 
number of phylogenetically informative traits. From all 
107 identified behavioural traits (Ellis et  al. 1998), only 
26% (28 characters) is possibly phylogenetically informa-
tive. For comparison, from 570 morphological charac-
ters scored by Livezey (1998) only 8% (48 characters) is 
potentially phylogenetically informative. Nevertheless, 
these morphological characters provide quite robust 
phylogenetic relationships, which exhibit some congru-
ence with relationships detected based on genetic data 
(compare Fig. 5 in Livezey 1998 with Fig. 2.1 in Krajewski 
2019).

Nevertheless, in combination with genetic data, behav-
ioural traits exhibit strong phylogenetic signal. Our find-
ings correspond with other works according to which 
behavioural data carry strong phylogenetic signal and are 
no more homoplasious than other data sets. For exam-
ple, as shown in the meta-analysis of de Queiroz and 
Wimberger (1993), studies of evolution on bovid behav-
iour (Deleporte and Cap 2014), behaviour and vocaliza-
tion in deer (Cap et al. 2002, 2008), grooming behaviour 
in rodents (Malange et al. 2013) or social displays of the 
Pelecaniformes (Kennedy et al. 1996), as well as of court-
ship behaviour in salamanders (Arnold et al. 2017) and in 
seabird behaviour (Paterson et al. 1995).

The species-specific behavioural traits, albeit phyloge-
netically useless, might represent a type of reproductive 
isolation mechanism to minimize the risk of hybridiza-
tion between sister or distantly related species (McCa-
rthy 2006). This aspect may be especially relevant for the 
different genera of cranes capable of hybridization, under 
captivity conditions as well in the wild (McCarthy 2006; 
Ottenburghs et al. 2015).

Reconstruction of ancestral behavioural repertoire
Reconstruction of crane ancestral behavioural reper-
toire indicates that complex behavioural repertoire was 
already present before group began to diversify. After 
start of diversification change of behavioural repertoire 
significantly slowed down with the tendency to lose traits 
rather than evolve new ones, e.g. Bugeranus and Anthro-
poides species. Even though the Balearicinae separated 
from Gruinae before approximately 31  Ma (Krajewski 
et al. 2010; Krajewski 2019), they exhibit no special dis-
plays or even unique changes in intensity of traits. A 
similar pattern was recognized by Johnsgard (1983), who 
argued that many morphological traits present in Balea-
ricinae are primitive for Gruidae, with Gruinae showing 

derived modifications. The diversification itself is imbal-
anced between both sister subfamilies (Krajewski et  al. 
2010), but that topic is itself beyond the scope of this 
contribution.

The most basal species of Gruinae, the Siberian Crane 
(Leucogeranus leucogeranus), shows the most different 
repertoire from all other species. However, differences 
are mainly in the intensity of performed display. This spe-
cies otherwise exhibits biological parameters very similar 
to those of other crane species, except for its territo-
rial behaviour, which is exhibited even during wintering 
(Johnsgard 1983).

Bugeranus and Anthropoides species as a group exhibit 
the most changes in behavioural repertoire both in evo-
lution/disappearing traits and changes in frequency of 
performances. We are not able to explain why in this lin-
eage the disappearing of traits occurs more often than 
evolution of new ones. It could be expected that the 
loss of traits is easier rather than de novo evolution, but 
in any case, it is known that the evolutionary loss might 
decrease costs under some selection regimes or at least 
might represent a nonadaptive evolutionary change (e.g. 
Aragón et al 1999; Beauchamp 1999; Ekman and Ericson 
2006).

The Sandhill Crane (Antigone canadensis) exhibits 
more similarities in behavioural displays with genus Grus 
than with genus Antigone. This fact can imply a faster 
diversification within the rest of Antigone, perhaps due to 
dynamic demographic changes with much more regular 
gene flow contacts among populations of A. canaden-
sis during the late Cenozoic (e.g. Wood and Krajewski 
1996; Rhymer et al. 2001; Jones et al. 2005). Conversely, 
this similarity could be a result of ancient hybridiza-
tion events [as proved e.g. in felids (Li et al. 2016) or in 
bovines (Wu et al. 2018) by genomic surveys].

Comparison of an influence of various scoring 
of behavioural traits
Since the character coding is an important issue in phylo-
genetic analyses (e.g. Scotland and Pennington 2000), we 
inspected this aspect too. The ancestral behavioural rep-
ertoires exhibited quite different scenarios to binary or 
multistate coding, in accordance with the results of San-
som and Wills (2013), which demonstrated that different 
scoring of traits could have a significant effect on results 
and reconstruction. A multi-state data coding approach 
showed more complex evolution of behaviour in cranes 
than the binary approach, but this is likely caused by 
the decrease of variability in behavioural data under the 
binary approach. Since the basic parameters of the level 
of homoplasy (CI) and phylogenetic signal were mostly 
similar in both approaches, we consider both scenarios as 
quite equivalent alternatives.
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Whereas there are minimum changes in de novo evolv-
ing and losing traits, evolution of behavioural traits in 
significantly more often accompanied by changes in fre-
quency of preformation specific displays. The changes 
in the intensity of the traits implies that some of them 
evolved more rapidly, which could also represent a repro-
ductive isolation mechanism preventing hybridization 
(Hendry et al. 2000 see also above) and/or some relaxed 
“phenotype” in newly occupied geographic regions [cf. 
dispersal phenotype sensu Geist (1987)].

In future research it might be also useful to compare 
wider spectrum of different statistical approaches [e.g. 
maximum parsimony versus Bayesian phylogenetic 
inference using Lewis’s Mk model; Schrago et al. (2018), 
Spade (2020), Varga et al. (2020), see also Goloboff et al. 
(2019)] to identify the best supported evolution of behav-
ioural traits.

Conclusions
Our results suggest that behaviour reflects phylogeny in 
cranes. The behavioural data of living species gives us the 
opportunity to decipher evolutionary history of crane in 
promising details. Considering the well-compiled mor-
phological, behavioural and molecular datasets for cranes 
(Ellis et  al. 1998; Livezey 1998; Krajewski et  al. 2010; 
Panov et  al. 2010; Krajewski 2019) the complete socio-
gram of the Limpkin is the most important facet for the 
final understanding of the evolution of behaviour cranes 
and their closest relatives.
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