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Abstract 

Background:  The reliability of long-term population estimates is crucial for conservation and management pur‑
poses. Most previous studies assume that count indices are proportionally related to abundance; however, this 
assumption may not hold when detection varies spatially and temporally. We examined seasonal variations in 
abundance of three bird species (Cabot’s Tragopan Tragopan caboti, Silver Pheasant Lophura nycthemera, and White-
necklaced Partridge Arborophila gingica) along an elevational gradient, using N-mixture models that take into account 
imperfect detection in our bird data.

Methods:  Camera-trapping was used to monitor temporal activity patterns of these species at Guangdong Nan‑
ling National Nature Reserve from December 2013 to November 2017 (4 seasons per year). For abundance analysis 
(N-mixture modeling), we divided a year into 4 seasons, i.e. 3 months per season, and performed the analysis by 
season. Elevation was incorporated into the N-mixture model as a covariate that may affect abundance. We compared 
the N-mixture model with a null model (no covariate model) and selected the better model based on AIC values to 
make an inference.

Results:  From 24 sampling sites, we obtained 6786 photographs of 8482 individuals of 44 bird species and 26 
mammal species. Silver Pheasant was photographed much more frequently and showed higher temporal activity 
frequency than White-necklaced Partridge or Cabot’s Tragopan. Silver Pheasant was camera-captured most frequently 
in summer, and other two species in winters. All three species had two daytime activity peaks: between 6:00 a.m. and 
10:00 a.m., and between 5:00 p.m. and 7:00 p.m., respectively. Our estimated abundance and detection probability 
from the N-mixture model were variable by season. In particular, all three species showed greater abundance in sum‑
mer than in winter, and estimated abundance patterns of all three species were more similar with observed camera-
trapping counts in summers. Moreover, in winter, elevation had a positive impact on abundance of Silver Pheasant 
and Cabot’s Tragopan, but not on White-necklaced Partridge.

Conclusions:  Our results demonstrate that the N-mixture model performed well in the estimation of temporal popu‑
lation abundance at local fixed permanent plots in mountain habitat in southern China, based on the modeling of 
repeated camera-trapping counts. The seasonal differences in abundance of the three endemic bird species and the 
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Background
An interesting topic for population ecology is deter-
mining how sympatric species partition their activity 
patterns, including spatio-temporal niches to promote 
stable coexistence (Frey et  al. 2017). Studying spatial 
and temporal partition of niches among sympatric spe-
cies provides insight into the mechanisms that facilitate 
stable coexistence, especially for endangered pheasant 
species (Carothers and Jaksic 1984; Kronfeld-Schor and 
Dayan 2003). In southern China, Cabot’s Tragopan (Tra-
gopan caboti), White-necklaced Partridge (Arborophila 
gingica) and Silver Pheasant (Lophura nycthemera) have 
sympatric distributions in most native primary forests. 
Though formerly common, all three species have been 
trending  dramatically downward due to habitat degra-
dation and human disturbance or hunting over the last 
50 years (Zhang et al. 2003). Cabot’s Tragopan is consid-
ered Vulnerable (VU) according to  the  IUCN  Red  List, 
and is a nationally protected species in China (Category 
I). White-necklaced Partridge is listed as Near Threat-
ened (NT) by IUCN, and Silver Pheasant is also a nation-
ally protected species (Category II) in China. According 
to recent surveys by Xu et  al. (2001) and Huang et  al. 
(2003), Cabot’s Tragopan and White-necklaced Partridge 
are at present rare and difficult to find in southern China. 
Based on our investigation over the last 10 years, popula-
tions of these pheasants in the Nanling Mountains, which 
may be the last refuge for these species, are relatively sta-
ble. Since all three species are sympatrically distributed 
in several national nature reserves in the areas, estimat-
ing their population abundances locally in the nature 
reserves is particularly important for their conservation 
management. Reliable long-term count data are crucial 
for conservation status assessment and spatio-temporal 
prediction of bird abundance or population size (Chan-
dler et  al. 2009; Jakob et  al. 2014). This is particularly 
true for Galliformes species in China (e.g. partridges, 
pheasants, grouses) for which abundance estimates are 
essential for assessing degrees of threat, determining 
the species’ conservation status (Lu 1991) and design-
ing appropriate conservation strategies (Zhang et  al. 
2003). Currently, most monitoring programs for estimat-
ing endemic species population sizes assume that count 
indices are proportionally related to abundance (Carbone 

et  al. 2001; Rovero and Marshall 2009). However, these 
data are rarely exhaustive and can only be regarded as 
an index of true abundance, rather than as abundance 
per se. Importantly, proportionality between an index 
and true abundance often cannot be assumed because 
individual detection probability varies spatially and tem-
porally (Royle and Nichols 2003; Alldredge et  al. 2007). 
Thus, pheasant population management policies require 
intensive sampling efforts and accurate estimating mod-
els, rather than mark–recapture or distance sampling.

To avoid spatial and temporal replication, a possible 
solution is to use recently developed models that simul-
taneously estimate abundance and detection probability 
using repeated count data (Royle 2004). These N-mixture 
models provide detectability-corrected abundance esti-
mates when individual identification is impossible (i.e. 
the individual is not marked), as is mainly the case in 
large-scale endangered species monitoring. Therefore, 
these models have considerable potential for unbiased 
estimation of abundance in the case of large-scale species 
studies (Kéry et  al. 2005; Kéry 2008). Although N-mix-
ture models were initially developed in 2004, they have 
not found a wide use in ecological studies, despite their 
ability to model spatially and temporally repeated counts, 
a kind of data that is often collected in the field. Their 
use has been mainly restricted to studies of scrub–shrub 
bird species and certain game bird species (Chandler 
et al. 2009) or as a basis for subsequent methodological 
development (Joseph et al. 2009). For galliformes species, 
these models only have been used in studies of Red-leg-
ged Partridge (Alectoris rufa) (Jakob et al. 2014), because 
of the difficulty of monitoring these endangered pheas-
ants, and the relative lack of reliable and cost-effective 
replicated counts. In this study, we explored the poten-
tial of N-mixture modeling for estimating population 
abundance and detection probability of three sympatric 
pheasant species with a spatial distribution and examined 
the associated major management implications.

Camera-trapping technology is increasingly used in 
wildlife research for spatiotemporal activities, and has 
become an effective tool to assess the biodiversity of ter-
restrial birds in China (e.g. phasianids, Li et  al. 2010a, 
b; Si and Ding 2014). Technical advances have enabled 
camera units to provide long-term and continuous data 

strong effect of elevation on abundance of two species in winter were only indicative of variations in spatio-temporal 
distribution within species and between species. In identifying suitable habitat for endemic pheasants, the positive 
elevational effect also suggests that more attention should be paid to conservation of areas with higher elevation in 
the Nanling Mountains.
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collection, and camera-trapping also has the advan-
tage of being a non-invasive way to record and moni-
tor cryptic and reclusive terrestrial animals (Welbourne 
et al. 2016). Camera units have previously been used to 
observe spatial and temporal niche partitioning for sym-
patric species that facilitate their coexistence (Di Bitetti 
et al. 2010; Monterroso et al. 2014; Sunarto et al. 2015). 
In southern China, ground-feeding pheasant species are 
often photographed by camera traps (Xiao et  al. 2014), 
including Silver Pheasant and White-necklaced Par-
tridge, which are among the species most frequently 
photographed by camera trap in Guangdong Province, 
China (Zou et al. 2018). Despite their popularity, surpris-
ingly few studies have examined camera-trapping sur-
vey results to offer guidelines for efficient study design, 
such as the minimum trapping effort required, estimated 
population abundance and detection probability (Si et al. 
2014).

In this study, we investigated spatial and temporal activ-
ity patterns of these three sympatric pheasant species 
with a long-term dataset of spatially replicated counts by 
camera-trapping, and evaluated the reliability of using an 
N-mixture modeling approach for estimating population 
abundance and detection probability. We examined the 
following questions: (1) What is the observed temporal 
activity pattern of these three species of pheasants based 
on monthly and daily changes in relative abundance, as 
determined by photos? (2) Does N-mixture modeling 
provide precise estimates for population abundance and 
detection probability, that are correlated to our replicated 
count dataset based on camera-trapping? (3) Do envi-
ronmental covariates (i.e. elevation, season) influence the 
estimated abundance and detection probability of some 
pheasant species at our fixed permanent plot?

Methods
Study area
The Nanling or “Southern” Mountains are the third-
most important biodiversity ecoregion in China, and 
occupy the easternmost boundary between the Sino-
Japanese and Oriental realms (Pang 2003). The moun-
tain ranges are situated between 23°37′‒27°14′N and 
109°43′‒116°41′E, straddling over 700 km from west to 
east. They represent an important boundary between 
the southern and central subtropical zones, and define 
the watersheds of the Yangtze and Pearl Rivers. Our 
survey was conducted in the central part of the Nan-
ling Mountains along the southern slope of Nanling 
National Nature Reserve (hereafter, “Nanling”), which 
covers 584  km2 (24°37′‒24°57′N, 112°30′‒113°04′E) 
and has a highest elevation of 1902  m on the summit 
of Shikengkong. The region has a subtropical monsoon 
climate, with a mean annual temperature of 17.4  °C. 

Mean monthly temperature ranges from 9  °C in Janu-
ary to almost 29 °C in July. Annual precipitation ranges 
from 1570 to 1800  mm, and mainly occurs between 
March and August. The elevational gradient of vegeta-
tion communities at Nanling encompasses mountain 
broadleaved evergreen forest, mixed evergreen and 
deciduous forest, coniferous and broadleaved mixed 
forest, mountaintop dwarf forest, and montane shrubs 
and herbs (Pang 2003).

Camera‑trapping survey design
Our research using camera traps at Nanling was approved 
by the Guangdong Wildlife Management Authority and 
conducted under the relevant wildlife protection laws 
of the People’s Republic of China. We deployed cam-
era traps in a permanent plot (6  km × 8  km) located in 
the old-growth broadleaved evergreen forest within the 
reserve where several pheasants often occurred together 
(Fig. 1, Additional file 1: Table S1). Twenty-four infrared 
digital cameras (Scoutguard SG550; Boly Media Commu-
nications Co., Ltd., Shenzhen, China) were set at random 
sites at an elevational range of 1066‒1572 m in the plot 
from December 2013 to November 2017 (4 years and 4 
seasons per year). The camera traps were sited along 
forest paths or woodland ways that were subject to lit-
tle or no human disturbance and would in any case have 
been very difficult to find by people who did not know 
their exact locations. Cameras were placed at distances 
of 200 m from each other and mostly at 100 m or more 
from the forest edge. We chose the specific positions of 
camera sites to optimize the viewing angle from the tree 
on which they were mounted. Cameras were placed at 
heights of 20‒30 cm above the ground on account of the 
relatively small body size of pheasant species compared 
to the larger mammalian species, and were also aligned 
to face north or south in order to reduce the influence 
of direct sunshine. Branches and grasses in front of the 
cameras were removed to prevent unwanted triggering of 
the cameras by moving vegetation, and protective water-
proof covers were fitted to the cameras to keep them 
dry and minimize damage from the frequent rains in the 
area. A gap was also maintained between the camera and 
the tree to which it was attached. The cameras were set to 
take three photographs and 10 s of video after each trig-
ger event, and the interval time was one second between 
two trigger events. Since individuals of the target species 
were unmarked, we defined a single detection of a species 
as a photo event separated by at least 30  min from the 
next photo event of the same species from the same cam-
era. All cameras were set to work 24 h a day and memory 
cards and batteries were checked every 3 months (Si et al. 
2014).



Page 4 of 10Zou et al. Avian Res           (2019) 10:42 

Temporal pattern and population estimation
We calculated the percentage ratio of photos recorded 
for each pheasant species and showed activity patterns of 
the three species pheasants in order to decrease absolute 
photo number differences. This minimized the impact of 
camera numbers and trapping period when comparing 
differences between months and hours, because all three 
species were recorded by the same number of cameras 
over the same amount of time. An index of the activity 
level for each hour or month was calculated by dividing 
the hourly or monthly number of occurrence events by 
the total number of occurrence events for each species. 
Hourly activity levels are expressed as percentages and 
depicted across 24  h, while monthly activity levels are 
expressed as percentages and depicted across 12 months. 
The monthly and daily changes in numbers of photos 
recorded by camera traps were analyzed by Kruskal–
Wallis because of the abnormal distribution of data.

For estimating population size or abundance, we 
stacked yearly data of 24 sites by season (a total of 4 sea-
sons). Although stacking data can be considered a pseudo 
replication, we used it because detection rates were low 
during the whole survey periods. However, it should be 
noted that there were variations in the period of camera 

trap surveys among sites and years, resulting in different 
sample sizes between seasons: Winter (Dec‒Feb) = 65, 
Spring (Mar‒May) = 67, Summer (Jun‒Aug) = 67, and 
Autumn (Sep‒Nov) = 60 samples.

Spatial autocorrelation
Before the final analysis, we determined spatial autocor-
relation in the data. We performed a Morans’ I test and 
examined the correlogram using the residuals from a 
generalized linear model with Poisson distribution in R 
(“spdep” package; Bivand et al. 2013). The model includes 
elevation and sampling effort (number of months when 
camera trap surveys were conducted) as explanatory 
variables and maximum number of individuals detected 
during each season as a response variable, i.e., abun-
dance. Spatial autocorrelation was weak in most cases: 
the Moran’s I value was ≤ 0.10 (0.02–0.10) in all cases (3 
species × 4 seasons) except three that also showed low 
values (0.12, 0.13 and 0.18). Thus, we considered spatial 
autocorrelation to be negligible.

Abundance analysis
To investigate the relationship between elevation and 
abundance of the three species and seasonal variation 

Fig. 1  The location of research areas in Nanling National Nature Reserve in Guangdong Province, southern China, and 24 camera trapping sites 
(white circles)
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in these relationships, we used an N-mixture model, 
accounting for imperfect detection in the estimation 
of abundance (Royle 2004). N-mixture models require 
repeated counts (temporal replicates) during a survey 
period. In general, the N-mixture model is composed of 
two model parts: an abundance model part estimating 
the local abundance at a site i, i.e., Ni, which is assumed 
to follow a Poisson distribution with mean local abun-
dance λ; and an observation model part linking Ni with 
p (detection probability), i.e., yij ~ binomial (Ni, p) where 
yij represents the observation state at a site i during rep-
licate survey j. Effects of covariates are incorporated into 
the model part associated with λ and p through a log-link 
and a logit-link function, respectively. Due to the low 
number of detections in our camera trap survey, we used 
a month as a replicate, generating 3 replicates per sea-
son and considered the maximum number of individuals 
captured by camera during a month as a count (observed 
abundance) for the month. However, during winter, the 
observed abundance of Cabot’s Tragopan was recorded 
as 1 at any site where Cabot’s Tragopan was detected. We 
used N-mixture models based on presence/absence data 
for this case (Royle and Nichols 2003).

We constructed four models for each species and sea-
son except Cabot’s Tragopan in winter; three models with 
elevation as a covariate for the abundance part [covariate 
models: Poisson, zero-inflated Poisson (ZIP), and nega-
tive binomial (NB)] and one model with only intercept 
(null model). We included two variants of the Poisson 
N-mixture model, i.e., ZIP and NB N-mixture models 
because a model fit of the Poisson N-mixture model was 
poor in most cases. Count data with many zero values, 
which are common, can cause overdispersion that affects 
the estimates of standard error or confidence intervals 
and a model fit. ZIP and NB N-mixture models are often 
used to account for the overdispersion and improve the 
model fit (Kéry and Royle 2016). Both models are also 
implemented in an “unmarked” package (Fiske and Chan-
dler 2011). For Cabot’s Tragopan in winter, we compared 
two models, i.e., the covariate model and the null model. 
No covariate was incorporated into detection probability, 
assuming constant detection probability. Elevation data 
were standardized to have a mean of 0 and a standard 
deviation of 1 to improve model fit. A model with low-
est AIC (Akaike’s Information Criterion) was selected as 
a final model for analysis (Burnham and Anderson 2002; 
see Additional file 1: Table S2 for AIC values of all mod-
els). However, if differences in AIC values between the 
model and the null model were less than 2, we considered 
there was no significant effect of elevation on the spe-
cies’ abundance. Using 1000 parametric bootstraps, we 
tested a model fit of the selected model for each species 
and season. Abundance analyses were conducted using 

“occuRN” function for Cabot’s Tragopan during winter 
and “pcount” function for other cases in “unmarked” 
package. All statistical analyses were performed in R ver-
sion 3.3.2 (R Core Team 2016).

Results
Comparison of numbers of photos that recorded the three 
pheasant species
A total of 6786 photographs of 8482 individuals were 
obtained at the 24 sampling sites between Decem-
ber 2013 and November 2017 (35,040 camera-days), 
with 44 bird species and 26 mammal species recorded. 
Numbers of photos of the three focus species varied, 
as follows: Silver Pheasant (682 photographs), White-
necklaced Partridge (170 photographs), and Cabot’s 
Tragopan (231 photographs) were recorded during the 
4-year survey, respectively. Camera traps recorded a 
mean of 12.48 ± 1.67 photos per month and 14.51 ± 1.25 
photos per hour for Silver Pheasant, 2.69 ± 0.36 photos 
per month and 3.53 ± 0.43 photos per hour for White-
necklaced Partridge, and 4 ± 0.44 photos per month 
and 2.18 ± 0.25 photos per hour for Cabot’s Tragopan 
(Fig. 2). There were significant differences in number of 
photos recorded by camera trap per month (χ2 = 30.86, 
df = 2, p < 0.001; Fig. 2a) and per hour (χ2 = 78.258, df = 2, 
p < 0.001, Fig. 2b) among the three species. These findings 
indicated a much greater abundance of Silver Pheasant 
than White-necklaced Partridge and Cabot’s Tragopan at 
Nanling Mountains.

Monthly and daily changes in numbers of camera trap 
photos
For temporal activity frequency, Silver Pheasant pre-
sented a higher value than other two species for both 
monthly (χ2 = 18.122, df = 2, p < 0.001) and daily change 
(χ2 = 29.729, df = 2, p < 0.001). Silver Pheasant was 
most frequently recorded from April to August during 
the 4  years of monitoring (Fig.  3a), and higher daytime 
activity peaks occurred in the morning from 6:00 a.m. 
to 7:00 a.m., and in the evening from 6:00 p.m. to 7:00 
p.m. (Fig.  3b). However, the temporal patterns of activ-
ity frequency of White-necklaced Partridge and Cabot’s 
Tragopan were similar, and there were not significant dif-
ferences among months (χ2 = 10.063, df = 11, p = 0.525) 
and daily hours (χ2 = 19.483, df = 13, p = 0.147). For 
instance, White-necklaced Partridge was most frequently 
recorded in January and February, and a higher daytime 
activity peak occurred from 6:00 p.m. to 7:00 p.m. Simi-
larly, Cabot’s Tragopan was most frequently recorded in 
January and February, and a higher daytime activity peak 
occurred from 8:00 a.m. to 10:00 a.m. and from 4:00 p.m. 
to 5:00 p.m.
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Effect of elevation on estimated abundance and seasonal 
variation
Among the three covariate models (i.e., Poisson, ZIP, and 
NB N-mixture model), the NB N-mixture mode was often 
selected as the best model for all three species, particularly 
Silver Pheasant and Cabot’s Tragopan (Table  1). Detec-
tion probability was low, ranging 0.01‒0.14 depending on 
season and species. Compared to other seasons, Silver 
Pheasant and White-necklaced Partridge showed relatively 
higher detection in summer than in other seasons, whereas 
Cabot’s Tragopan showed relatively higher detection in 
autumn (but its estimate was not significant). Elevation 
had a significant impact on the abundance of two species 
(Silver Pheasant and Cabot’s Tragopan) during winter: both 
showed greater abundance at high rather than low eleva-
tion (Table 1 and Fig. 4). In contrast, White-necklaced Par-
tridge did not show a clear association with elevation in 

any season (Table 1). All species showed lower abundance 
in winter than other seasons. In particular, the abundance 
of Cabot’s Tragopan was the lowest among the three spe-
cies in winter (Table 1 and Fig. 5a), which is consistent with 
the observation that there were no cases of ≥ 2 individu-
als caught by camera across the sites in winter. For Silver 
Pheasant and Cabot’s Tragopan, abundance was greater in 
summer (Table  1 and Fig.  5b), whereas the abundance of 
White-necklaced Partridge was greater in autumn. Back-
transformed detection probability presented similar pat-
tern with estimated abundance (Table 1 and Fig. 6).   

Discussion
Studying spatial and temporal partition of sympatric 
species provides insight into the mechanisms that facili-
tate stable coexistence (Carothers and Jaksic 1984; Kro-
nfeld-Schor and Dayan 2003). Wilson and Martin (2008) 

Fig. 2  Mean numbers of photos trapped per month (a) and per hour (b) for Silver Pheasant, White-necklaced Partridge and Cabot’s Tragopan. Box 
plots show medians (horizontal lines), means (rectangle), 95-percentiles and extreme values

Fig. 3  Monthly (a) and daily (b) change in percent activity frequency for Silver Pheasant, White-necklaced Partridge and Cabot’s Tragopan
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studied breeding habitat selection of three coexisting 
species, White-tailed Ptarmigan (Lagopus leucura), Rock 
Ptarmigan (L. muta) and Willow Ptarmigan (L. lagopus) 
in the southern Yukon Territory, Canada. White-tailed 
Ptarmigan tends to occur at higher elevations, and on 
steeper slopes, and selects drier habitats dominated by 
lichens, rock, and dwarf shrubs; Rock Ptarmigan prefers 

lower elevations with higher more graminoid-covered 
meadows and scattered woody shrubs; and Willow Ptar-
migan nests in areas with dense, woody shrubs at lower 
elevations and on flatter slopes. Differences in habitat 
preference therefore allow the three species to coex-
ist. In a study of three sympatric cormorants in India, 
Mahendiran (2016) showed that Little Cormorant 
(Phalacrocorax niger) and Indian Cormorant (P. fusci-
collis) share the same foraging habitat, but they tend to 
forage at different time: Little Cormorant forages in the 
morning, and Indian Cormorant forages in the after-
noon. Additionally, Little Cormorant and Great Cormo-
rant (P. carbo) share the same foraging time but tend to 
use different foraging habitats: Little Cormorant uses 
lentic habitat and Great Cormorant uses lotic habitat. 
Consequently, this niche divergence results in resource 
partitioning. Furthermore, two sympatric deer species 
may mitigate competition for similar space and food 
resources through differences in their activity patterns 
(Ferreguetti et  al. 2015), and time can be considered a 
resource (Halle 2000).

In our study, Silver Pheasant was most frequently 
recorded during the breeding season, and higher daytime 
activity peaks occurred in morning and evening (Fig. 3), 
which was  consistent  with other studies. For instance, 
Wu et al. (2017) surveyed yearly activity patterns of Silver 
Pheasant at Fengyangshan-Baishanzu National Nature 
Reserve in Zhejiang, and showed that activity increased 
in May, decreased in September, and that there were 
peaks in June and August. Peak daytime activity also 
occurred between 05:00 and 07:00 a.m. in spring and 
summer, and 07:00–09:00 a.m. in winter in Zhejiang. 
The monthly peak activity increased dramatically dur-
ing the breeding season at both study sites, which indi-
cates that Silver Pheasants have a more fixed home range 
area in summer. The species has been recorded migrating 

Table 1  Parameter estimates (± standard errors) 
of the model selected for each species and season

Values are not back-transformed: estimates related to abundance and detection 
are on log and logit scale, respectively

Standard errors are calculated based on parametric bootstrap method

Estimates with p-value < 0.05 are in italic

Note that there are only two cases that the covariate model with elevation was 
better than the null model (no covariate) based on AIC values: Silver Pheasant 
and Cabot’s Tragopan during winter. See Additional file 1: Table S2 for the 
summary of model selection (AIC values and weights of all models)

Season Species Abundance Detection

Intercept Elevation Intercept

Winter Silver Pheasant 1.42 ± 0.58 0.89± 0.28 ‒ 3.09 ± 0.56

White-necklaced 
Partridge

1.94 ± 0.80 ‒ ‒ 3.82 ± 0.81

Cabot’s Tragopan 0.39± 0.94 1.20 ± 0.30 ‒ 3.18 ± 0.91

Spring Silver Pheasant 2.67 ± 0.81 ‒ ‒ 3.26 ± 0.84

White-necklaced 
Partridge

2.78 ± 4.79  ‒ ‒ 3.57 ± 4.80

Cabot’s Tragopan 2.23 ± 1.24 ‒ ‒ 3.39 ± 2.72

Summer Silver Pheasant 2.73 ± 0.35 ‒ ‒ 2.95 ± 0.33

White-necklaced 
Partridge

2.03± 0.58 ‒ ‒ 3.35± 0.56

Cabot’s Tragopan 2.24 ± 0.75 ‒ ‒ 3.50 ± 0.77

Autumn Silver Pheasant 2.58 ± 0.47 ‒ ‒ 3.12 ± 0.47

White-necklaced 
Partridge

4.18 ± 1.05  ‒ ‒ 4.59 ± 1.07

Cabot’s Tragopan 1.29 ± 1.41 ‒ ‒ 1.80 ± 1.45

Fig. 4  Effect of elevation on estimated abundance of Silver Pheasant (a) and Cabot’s Tragopan (b) during the winters. The red lines represent the 
smoothed 95% confidence interval
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altitudinally with season (Gao 1991). In contrast, White-
necklaced Partridge and Cabot’s Tragopan were most 
frequently recorded by camera in winter, and there was 
no variation in monthly activity detection probability. 
One explanation for this is that these two species have 
a fixed or smaller home range, and do not migrate alti-
tudinally  with  season (Zhao 2001). Alternatively, the 
results may reflect that compared to Silver Pheasant both 
White-necklaced Partridge and Cabot’s Tragopan have 
much lower “true” abundance and detection probability 
in our permanent study plot (Fig. 2), or that four years of 
survey are not long enough to adequately record similar 
differences in monthly activity between the two species. 
It is a matter of urgency to assess the endangered status 
of these two species, and to establish protection strate-
gies for White-necklaced Partridge and Cabot’s Tragopan 
at Nanling. In summary, monthly activity peaks of Sil-
ver Pheasant were different from the other two species, 

which indicated that temporal activities were distinct 
for these three pheasant species as studies of Little Cor-
morant and Indian Cormorant have shown in India 
(Mahendiran 2016). Such activity differences facilitate 
the coexistence of endangered sympatric species, reflect 
niche diversification, and expand knowledge of coexist-
ence in species ecology.

The study of spatial and temporal variation in popula-
tion abundance is central to ecology (Bivand et al. 2013). 
For instance, bird counts are important organismic indi-
cators in biodiversity monitoring programs, where the 
population sizes of specific species or functional guilds 
are used to evaluate environmental health (Zhang et  al. 
2015). For some endemic species, bird counts are also 
used to measure the efficiency of nature-protection 
actions. However, estimation of abundance for animal 
populations involves two basic issues (Royle and Nich-
ols 2003). First, the investigator is sometimes interested 
in areas that are too large for ground surveys to be con-
ducted over the entire area of interest. Secondly, many 
species are so widespread or so inconspicuous, or have 
such low population densities, that their abundance 
cannot be assessed without error, but instead must be 
estimated using methods that account for detectability. 
In order to  address  these  drawbacks,  Royle (2004) and 
Kéry et  al. (2005) have developed a N-mixture model 
for accounting for heterogeneous detection probabili-
ties in replicated presence–absence data (i.e., ‘occupancy 
surveys’) where the heterogeneity arises as a result of 
variation in abundance among sites. This model enables 
abundance estimation without individual identifica-
tion, based simply on temporally and spatially replicated 
counts. The motivating result of our study is that we 
identified covariate effects and obtained estimates of 
detectability and abundance that were largely consistent 

Fig. 5  Estimated total abundance across 24 sampling camera sites during winter (a) and summer (b)

Fig. 6  Back-transformed detection probability (mean + SE) of each of 
three species in winter and summer
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with our expectations. Moreover, the N-mixture model 
was able to distinguish complex covariate relationships 
(i.e. season and elevation), and the parameters of this 
relationship are identifiable under this model.

Conclusions
To conclude, this study demonstrates that the N-mixture 
models have performed well for the estimation of temporal 
population abundance at local a fixed permanent plot in 
mountain habitat in southern China, based on the mode-
ling of repeated camera-trapping counts of three pheasant 
species. The heterogeneity in detection can be modeled 
easily using environmental covariates, such as seasonal 
and elevational factors. Notably, summer, when breeding 
occurs, is more suitable for the population estimation of 
pheasants than other seasons. In assessing  suitable  habi-
tat of endemic pheasants for conservation purposes, more 
attention  should be  paid to higher elevational areas at 
Nanling. We suggest that the N-mixture model is a prom-
ising approach for camera-trapping data for endemic for-
est pheasants, or other species with similar life histories, 
and for estimating abundance for management purposes.

Moreover, the use of camera-trapping and N-mixture 
models for monitoring is more cost efficient than classi-
cal observation methods. A further point is that poten-
tial sources of detection heterogeneity are systematically 
surveyed and included in the model (Jakob et  al. 2014). 
In cases where local abundance is highly heterogene-
ous, different habitat covariates might be related to 
abundance to reduce the confidence interval of the esti-
mates. Lastly, this approach would be useful for conser-
vation policy applications (e.g. to assess the vulnerability 
of a population to extinction, true population trajectory, 
and metapopulation dynamics), because estimates of 
“true abundance that are free of any potentially distort-
ing effects of detection probability” are required, and 
simple counting indices of “relative abundance” are not 
sufficient.
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