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Abstract 

Background:  Bringing free-living animals into captivity subjects them to the stress of both capture and captivity, 
leading to the alteration of normal physiological processes and behaviors through activation of the hypothalamic–
pituitary–adrenal axis. In free-living birds, although elevated plasma corticosterone (CORT) is an important adaptation 
regulating physiological and behavioral responses during the process of capture and captivity stress, little information 
is currently available on the effects of such stress on plasma metabolite levels.

Methods:  We examined the effects of immediate capture and 24-h captivity on body mass, body condition, plasma 
CORT, and metabolite levels including glucose (Glu), triglyceride (TG), total cholesterol (TC), uric acid (UA), in breeding 
Eurasian Tree Sparrows (Passer montanus).

Results:  CORT and Glu levels were increased significantly by the stress of capture, whereas TC and UA levels 
decreased. Body mass, body condition declined notably after 24 h in captivity, but CORT, Glu, and UA levels increased. 
Furthermore, male sparrows had lower TG levels after both capture and captivity than those of females. The relation-
ships between plasma CORT and metabolite levels varied between sexes.

Conclusions:  Our results revealed that the metabolic status of Eurasian Tree Sparrows could be dramatically altered 
by capture and captivity. Monitoring the dynamic effects of both capture and captivity on plasma CORT, metabolite 
levels in a free-living bird contributes to a better understanding of the stress-induced pathways involved in sex-
dependent energy mobilization.
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Background
Bringing free-living animals into captivity is frequently 
required for conservation, and for research in animal 
ecology, environmental physiology, and conservation 
biology (Dickens et  al. 2010; Mason 2010; Mason et  al. 
2013; Dickens and Bentley 2014). This process subjects 
animals to both the acute stress of immediate capture and 
the chronic stress of captivity, resulting in the alteration 

of normal physiology and behavior (Dickens et al. 2010; 
Angelier et  al. 2016). In vertebrates, capture stress may 
acutely activate the hypothalamic–pituitary–adrenal 
(HPA) axis to increase glucocorticoid (GC) levels that 
can enhance survival by regulating behavioral and physi-
ological responses (Romero and Wingfield 1999; Sapol-
sky et  al. 2000; Wingfield and Kitaysky 2002). However, 
captivity stress may chronically increase GC levels, which 
may reduce fitness through a suite of deleterious effects 
such as suppressing parental behavior, compromising 
reproductive success and promoting metabolic disorders 
(Dallman 1993; Wingfield et  al. 1995; Vegiopoulos and 
Herzig 2007). Some previous studies have demonstrated 
the effects of capture and captivity stress on the HPA axis 
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and behavioral responses of free-living animals (Rich and 
Romero 2005; Cyr et al. 2007, 2009; Dickens and Romero 
2009; Dickens et al. 2009; Lattin et al. 2012; Fischer et al. 
2018). To date, however, there has been little research on 
the dynamic changes of both plasma GCs and metabo-
lites during the first hours, or days, free-living animals 
have spent in captivity (Angelier et al. 2016).

In mammals, stress-induced GCs promote hydrolysis 
of triglycerides (TG) stored in adipocytes except induc-
ing an increase in circulating glucose (Glu) levels through 
hepatic gluconeogenesis and maintain hyperglycemia 
by suppressing the uptake of Glu into peripheral tis-
sues (Grégoire et al. 1991; Yamada et al. 1993). Although 
increasing GC levels is a general adaptive characteristic 
used to mobilize energy stores in a variety of metabolic 
pathways (i.e., increased energy expenditure), the regu-
latory mechanisms and physiological consequences of 
capture stress and captivity stress differ (Sapolsky et  al. 
2000). Compared to mammals, birds can maintain higher, 
better-controlled, plasma Glu levels (Braun and Sweazea 
2008; Li 2017). Although an increase in corticosterone 
(CORT, the main GC in birds) in response to acute stress 
is ubiquitous in free-living birds, alteration of plasma 
Glu levels is not universal. For example, plasma Glu was 
found to increase in response to capture stress in Abert’s 
Towhees (Melozone aberti) and King Penguin (Apteno-
dytes patagonicus) chicks (Corbel et al. 2010; Davies et al. 
2013), but not in Curve-billed Thrashers (Toxostoma 
curvirostre) (Fokidis et  al. 2011). Moreover, plasma Glu 
response to capture stress varies with life-history stages 
in Rufous-winged Sparrows (Peucaea carpalis), i.e. not 
change in breeding stage, and decreased in molting and 
non-breeding stages (Deviche et  al. 2016a). The reason 
for this variability in plasma Glu regulation in free-living 
birds remains largely unknown. In birds, plasma TG has 
been widely used as an indicator of body mass or condi-
tion (Guglielmo et al. 2005). A rapid decrease in the TG 
of free-living birds can be detected as soon as 20  min 
after capture (Guglielmo et  al. 2002). The confinement, 
unfamiliar and unnatural conditions experienced by free-
living animals in captivity can lead to the secretion of 
plasma GC and metabolites (e.g. Glu and TG), resulting 
in metabolic disorders, energetic stress and reduced fit-
ness (Morgan and Tromborg 2007; Dickens et  al. 2009, 
2010; Mason 2010; Fokidis et al. 2011).

Uric acid (UA) is a product of protein degradation 
(Costantini 2008) and is also a potent antioxidant (Stine-
felt et  al. 2005; Cohen et  al. 2007; Braun and Sweazea 
2008). Capture stress can lead to decreased plasma UA 
in some bird species, which is believed to function as an 
antioxidant defense against increased free radicals dur-
ing oxidative stress (Cohen et al. 2007; Davies et al. 2013). 
However, chronic stress of captivity may generally raise 

UA levels, which is thought to promote gluconeogen-
esis by increasing the use of amino acids (Klasing 1998). 
Cholesterol is an essential constituent of cell membranes 
modulating their fluidity and is also a precursor of steroid 
hormones. Hypocholesterolemia may be associated with 
low serum antioxidant reserves and may increase suscep-
tibility to oxidative stress (Muldoon et  al. 1996). It has, 
therefore, been hypothesized that cholesterol may act as 
an antioxidant (Schroepfer 2000). Even though oxidative 
stress typically triggers the stress response process (Cos-
tantini 2008), few studies have linked it to the modulation 
of stress response mediated by GC release.

Male and female birds exhibit sex-specific physiology 
associated with their differentiated reproductive func-
tions, e.g., development of the testis and spermatogenesis 
in males and development of the ovary and oogenesis in 
females. In free-living birds, the effects of both capture 
and captivity stress on sex-specific CORT responses 
have been well documented (Dickens et al. 2010; Breuner 
2011). However, the influences of capture and captiv-
ity stress on sex-specific metabolites have received little 
attention.

To determine the dynamic effects of both capture stress 
and subsequent captivity stress on plasma CORT and 
metabolites, we studied changes in plasma CORT, metab-
olite levels, including Glu, TG, total cholesterol (TC), and 
UA, of breeding Eurasian Tree Sparrows (Passer monta-
nus) that were subject to both the stress of capture in the 
field and a subsequent 24-h period in captivity. The Eur-
asian Tree Sparrow is a typical human commensal spe-
cies that distributes throughout the Eurasian continent 
(Summers-Smith 2014). In recent years, the reproductive 
biology and endocrinology of the Eurasian Tree Sparrow 
has been relatively well studied, e.g. their adrenocortical 
responses to capture stress during the breeding season 
in relation to body condition, testosterone (T), corticos-
teroid-binding globulin (CBG; Li et al. 2008, 2011, 2012, 
2016; Zhao et al. 2017a, b). We hypothesized that (1) Glu 
would increase, and TG decrease in breeding Eurasian 
Tree Sparrows, concomitantly with increased CORT lev-
els in response to both capture and captivity stress; (2) 
plasma UA would decrease and UA increase after capture 
and 24-h captivity stress; (3) male and female sparrows 
would differ in both baseline and stress-induced (capture 
and captivity) metabolite levels.

Methods
Animals and study sites
A total of 22 Eurasian Tree Sparrows (12 males and 10 
females) were captured opportunistically with mist nets 
between 06:00 and 10:00 at the Shijiazhuang Acad-
emy of Agriculture and Forestry Sciences (38°06.71′N, 
114°31.49′E, elevation: 73 m), and at the old (38°01.83′N, 
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114°31.50′E, elevation: 75  m), and new (37°59.88′N, 
114°31.18′E, elevation: 72 m) campuses of Hebei Normal 
University, Hebei Province, China. All capture sites were 
situated in similar habitat near farmlands and buildings. 
All sparrows were captured during the breeding season: 
May 15–June 9, 2012‒2013.

Experiment design of capture and captivity stress
All wild-caught sparrows were subject to a standardized 
capture-handling-restraint stress protocol (Wingfield 
et al. 1992; Li et al. 2008, 2011) within 1 h after capture 
in the field, followed by 24 h of captivity stress in cages. 
After capture and sampling in the field, each bird was 
individually housed in cages (40  cm × 30  cm × 30  cm) 
and provided with foxtail millet (Setaria italica) mixed 
with mealworms and water ad  libitum, and transferred 
to a laboratory at Hebei Normal University. To reduce 
confounding variables the temperature and photoperiod 
in the laboratory were kept as close as possible to those 
in the birds’ natural environment (temperature: 17‒29 °C; 
photoperiod: 14.2‒14.9 h).

Blood sampling and morphological measurements
In the field, baseline levels of plasma CORT and metab-
olites were sampled within 3  min of capture, and cap-
ture stress-induced levels were sampled 30 and 60  min 
post-capture. Briefly, a wing vein was punctured with 
a 26 gauge needle, and approximately 80 μL of blood 
was collected into heparinized microhematocrit capil-
lary tubes. Birds were then placed in an opaque cloth 
bag, and additional blood samples were collected from 
them after another 30 and 60  min post-capture. In the 
laboratory, captivity stress-induced levels of plasma 
CORT and metabolites were sampled at the end of the 
24 h period of captivity within 3 min of extracting birds 
from their cages. All blood samples were stored on ice 
for 3‒4  h until they could be centrifuged in the labora-
tory at 855 × g for 10 min. Plasma samples were stored at 
− 20 °C until assayed.

After blood sampling was completed, each bird was 
weighed to ± 0.1 g, and its wing length, tarsus length, and 
the width and height of the cloacal protuberance, meas-
ured to ± 1 mm. Following Zhao et al. (2017b), we used 
the ratio of an individual bird’s body mass (g) to wing 
length (mm)3 as an index of its body condition. Birds 
were sexed by presence or absence of a brood patch (only 
females have a brood patch), and by cloacal protuberance 
size and wing length (males have significantly larger cloa-
cal protuberances and longer wings than females).

Assays of plasma CORT and metabolites
Plasma CORT levels were measured using enzyme 
immunoassay kits according to the manufacturer’s 

instructions (Cat No. ADI-901-097, Enzo Life Sciences) 
with minor modifications (Li et al. 2011). Briefly, 7 μL of 
plasma was diluted with 42 μL of 2% steroid displacement 
buffer. After 15 min, 230 μL of assay buffer was added to 
each sample, vortexed and a 100 μL aliquot of this mix-
ture placed in an individual well. Standard curves with 
six dilutions ranging from 12,500 to 4 pg of CORT were 
obtained from each sample. An extra standard of 100 pg 
of CORT was run in each plate to assess inter-assay vari-
ation. All samples were run in duplicate. Intra- and inter-
assay variation were 4.5% and 7.9%, respectively. Assay 
sensitivity was 0.9 ng/mL.

Plasma metabolites (Glu, TG, TC, UA) were measured 
in 25 μL plasma samples diluted with dH2O (1:39) using 
an automatic biochemical analyzer (Mindray BS-180) 
with commercially available kits (Mindray Corp., Shenz-
hen, China). All samples were run in duplicate. Intra- and 
inter-assay variation were 3.1% and 8.2% (Glu), 9.6% and 
10.1% (TG), 7.9% and 9.2% (TC), 8.4% and 11.6% (UA), 
respectively. Assay sensitivity was 0.3  mmol/L (Glu), 
0.03 mmol/L (TG), 0.04 mmol/L (TC), 14.2 μmol/L (UA).

Statistical analysis
To identify the factors that affected body mass, plasma 
CORT, metabolites, and enzyme activity, a generalized 
linear mixed model (GLMM) was used to assess the sig-
nificance of the fixed effects of repeated-measures sam-
pling (time), sex, and the interaction between time and 
sex, and the random effects of sampling year and site. 
We used SPSS 24.0 software to fit GLMMs and estimate 
F statistics, degrees of freedom and p-values. The statis-
tical significance of differences between pairs of means 
was assessed using Bonferroni-adjusted post hoc tests 
based on the means estimated by the GLMMs or using 
independent t-tests. Spearman correlations were used to 
investigate relationships between baseline (within 3 min 
of capture) or stress-induced CORT levels (30 and 60 min 
post-capture and after 24 h in captivity) and metabolites. 
p values < 0.05 were considered significant.

Results
Effects of capture and 24‑h captivity stress on body mass 
and plasma CORT
Both body mass and CORT levels varied markedly with 
sampling time, independent of sex, and the interaction 
between time and sex (Table  1). Body condition index 
varied with sample time and sex, independently of the 
interaction between time and sex (Table  1). Post hoc 
results showed that both body mass and body condi-
tion decreased significantly during the 24-h period birds 
were held in captivity (Fig. 1a, b), and that female spar-
rows were in better condition than males (Fig. 1b). Both 
the stress of capture and captivity caused CORT levels to 
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Table 1  Results of  a  generalized linear mixed model (GLMM) of  the  effects of  sampling time, sex, and  interaction 
between time and sex (fixed factors), and sampling year, site, and individual (random factors) on the body mass (Mass), 
body condition index (BCI), plasma corticosterone (CORT), glucose (Glu), triglyceride (TG), total cholesterol (TC), uric acid 
(UA), levels of Eurasian Tree Sparrows (Passer montanus)

Body mass was measured 3 min after capture and after 24 h in captivity and other physiological variables were measured 3, 30 and 60 min after capture and after 24 h 
in captivity. Significant factors (p < 0.05) are shown in italics

Variable Factor F df p Variable Factor F df p Variable Factor F df p

Mass Intercept 2.834 3,32 0.054 BCI Intercept 4.162 3,32 0.013 CORT Intercept 2.817 7,81 0.011

Time 6.688 1,32 0.014 Time 4.163 1,32 0.050 Time 6.052 3,81 0.001

Sex 0.071 1,32 0.792 Sex 5.645 1,32 0.024 Sex 0.52 1,81 0.473

Time × sex 0.132 1,32 0.719 Time × sex 0.019 1,32 0. 893 Time × sex 0.5 3,81 0.683

UA Intercept 6.808 7,72 < 0.001 Glu Intercept 5.552 7,72 < 0.001 TG Intercept 2.855 7,72 0.011

Time 15.172 3,72 < 0.001 Time 11.274 3,72 < 0.001 Time 1.852 3,72 0.146

Sex 0.632 1,72 0.429 Sex 0.935 1,72 0.337 Sex 13.735 1,72 < 0.001

Time × sex 0.09 3,72 0.965 Time × sex 0.941 3,72 0.426 Time × sex 0.138 3,72 0.937

TC Intercept 4.600 7,71 < 0.001

Time 7.506 3,71 < 0.001

Sex 3.142 1,71 0.081

Time × sex 1.105 3721 0.353

Fig. 1  Change in body mass (mean ± SEM; a and body condition (mean ± SEM; b; male: n = 12; female: n = 10) index in free-living Eurasian Tree 
Sparrows (Passer montanus) after 24 h in captivity and plasma corticosterone levels (CORT, mean ± SEM; c measured within 3, 30 and 60 min of 
capture and after 24 h in captivity (n = 22). Different letters indicate statistically significant differences between groups (p < 0.05)
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increase significantly relative to baseline levels (Fig.  1c; 
Additional file 1: Table S1). There was no significant dif-
ference between CORT levels measured 30 min after cap-
ture and those measured after 24 h in captivity (Fig. 1c; 
Additional file 1: Table S1).

Effects of capture and 24‑h captivity on plasma Glu, TC, TG, 
and UA
Plasma Glu, TC, and UA levels varied significantly with 
sampling time, independent of sex, and the interaction 
between time and sex (Table  1). Post hoc test results 
revealed that Glu levels measured 30 and 60  min after 
capture were significantly higher than baseline levels 
(Fig. 2a; Additional file 1: Table S1). TC levels decreased 
notably at 60 min after capture relative to baseline levels 
(Fig. 2c; Additional file 1: Table S1). UA levels were sig-
nificantly lower at 30 min and 60 min post-capture than 
baseline levels (Fig.  2b; Additional file  1: Table  S1). Glu 
levels measured after 24 h in captivity were significantly 
higher than both baseline levels and those measured 
60  min post-capture, and UA levels were also markedly 
higher after 24 h in captivity than both the baseline level 

and those measured 30  min and 60  min post-capture 
(Fig. 2a, b; Additional file 1: Table S1). However, TC levels 
after 24 h in captivity did not differ from those of baseline 
and stress-induced levels after capture.

Plasma TG levels did not vary with sampling time but 
varied significantly with sex, independent of the interac-
tion between time and sex (Table 1). Male sparrows had 
significantly lower TG levels than females (Fig. 2d).

Correlations between CORT and metabolites
Baseline plasma CORT levels did not correlate with 
baseline levels of Glu, TG, TC, and UA in both male and 
female sparrows (Table 2). Stress-induced CORT levels at 
30 min and 60 min after capture were not correlated with 
any variables except for a positive relationship between 
stress-induced CORT and TG levels 30 min post-capture 
in females (Table  2; Fig.  3a). Captivity stress-induced 
CORT levels in females were negatively correlated Glu, 
TG, and positively correlated with UA levels (Table  2; 
Fig.  3b, c, d). Furthermore, although baseline TG lev-
els were neither correlated with body mass (male: 
r = − 0.291, p = 0.385; female: r = − 0.587, p = 0.126) nor 

Fig. 2  Changes in plasma glucose (Glu), mean ± SEM; a uric acid (UA), mean ± SEM; b total cholesterol (TC), mean ± SEM; c and triglyceride (TG), 
mean ± SEM; d levels in male (n = 12) and female (n = 10) Eurasian Tree Sparrows (Passer montanus) measured within 3, 30 and 60 min of capture, 
and after 24 h in captivity. Groups with different letters represent statistically significant differences between groups (p < 0.05)
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body condition (male: r = − 0.064, p = 0. 853; female: 
r = − 0.214, p = 0.610), baseline TC levels were positively 
correlated with UA levels in both sexes (male: r = 0.682, 
p = 0.012; female: r = 0.905, p = 0.039).

Discussion
In Eurasian Tree Sparrows, although both the stress of 
capture and 24 h in captivity elevated plasma CORT and 
Glu levels, they had different effects on TC and UA lev-
els. Furthermore, TG levels of males and females differed. 
Free-living Eurasian tree sparrows were caught and sam-
pled on the day of capture and re-sampled the day after 
bringing them to the laboratory. Therefore, the observed 
changes in plasma CORT and metabolites may have been 
due to the combined effects of initial capture stress fol-
lowed by 24 h in captivity.

Effects of capture stress
Capture stress protocol has been widely used in evalu-
ating acute stress on the physiological changes in free-
living animals, which includes not only an unpredictable 
capture-handling stimulus but also a stimulus of short-
term fasting (Wingfield et al. 1992). In the present study, 
free-living Eurasian tree sparrows showed an increase 
in plasma CORT levels 30 min after capture. Such acute 
responses are generally thought to allow animals to cope 
physiologically and behaviorally with perturbations in 
the environment (Romero 2002). Meanwhile, plasma Glu 

levels followed a similar pattern to CORT. This result 
is consistent with the increase in Glu observed in king 
penguin chicks and Abert’s towhees (Corbel et al. 2010; 
Davies et  al. 2013), and pre-breeding rufous-winged 
sparrows (Deviche et  al. 2016a). During capture stress, 
mobilizing carbohydrate stores as the principal energy 
source has been considered the most efficient way to 
transition to the emergency life history stage (Wingfield 
et al. 1998; Landys et al. 2006). Increased stress-induced 
CORT is believed to be essential to maintain hyperglyce-
mia by suppressing the Glu uptake of peripheral tissues 
(Landys et al. 2004) and promoting hepatic gluconeogen-
esis (Jenni-Eiermann et al. 2002). However, recent avian 
studies demonstrated that increased plasma CORT is 
not necessarily associated with hyperglycemia (Fokidis 
et al. 2011; Deviche et al. 2014, 2016a, b). Therefore, the 
underlying mechanism of plasma CORT in regulating 
Glu levels in free-living animals may differ from previous 
findings.

TG levels in Eurasian tree sparrows did not change 
in response to capture stress and were not correlated 
with body mass or body condition. Consistent with our 
results, capture stress did not reduce the TG plasma lev-
els of urban curve-billed thrashers (Fokidis et  al. 2011). 
However, capture stress has been found to decrease TG 
levels in both free-living desert curve-billed thrashers 
and western sandpipers (Calidris mauri), which suggests 
TG catabolism and inhibition of lipogenesis (Guglielmo 

Table 2  Results of  Spearman correlation between  plasma corticosterone (CORT) and, glucose (Glu), triglyceride (TG), 
total cholesterol (TC), uric acid (UA), levels in male and female Eurasian Tree Sparrows (Passer montanus)

All variables were measured at 3 (baseline levels), 30 and 60 min after capture and after 24 h in captivity. r represents Spearman correlation coefficient and significant 
factors (p < 0.05) are shown in italics

Variable Male Female

Glu TG TC UA Glu TG TC UA

Baseline CORT

 r 0.173 0.236 0.509 0.318 0.630 0.371 0.037 0.037

 p 0.612 0.484 0.110 0.340 0.129 0.413 0.937 0.937

 n 11 11 11 11 7 7 7 7

CORT at 30 min after capture

 r − 0.079 0.273 0.006 − 0.067 0.714 0.786 0.321 0.750

 p 0.829 0.446 0.987 0.855 0.071 0.036 0.482 0.052

 n 10 10 10 10 7 7 7 7

CORT at 60 min after capture

 r 0.006 − 0.127 − 0.624 0.042 0.464 0.214 0.071 0.179

 p 0.987 0.726 0.054 0.907 0.294 0.645 0.879 0.702

 n 10 10 10 10 7 7 7 7

CORT after 24-h of captivity

 r − 0.417 0.100 − 0.233 0.567 − 0.714 − 0.762 − 0.524 0.738

 p 0.265 0.798 0.546 0.112 0.047 0.028 0.183 0.037

 n 9 9 9 9 8 8 8 8
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et al. 2002; Fokidis et al. 2011). It was demonstrated that 
the changes of TG levels during capture stress might be 
dependent on body condition, i.e., those individuals with 
better body condition do not necessarily decrease their 
plasma TG levels (Fokidis et  al. 2011). Therefore, the 
effect of capture stress on TG levels may depend on an 
individuals’ energy status. Further research is required 
to determine the correlation between plasma TG and 
energy status in free-living birds, and the modulation of 
lipid metabolism in response to capture stress.

Consistent with the results of studies on some other 
species (Cohen et  al. 2007; Davies et  al. 2013; Deviche 
et  al. 2014, 2016a), the UA levels of Eurasian tree spar-
rows decreased 30 min and 60 min after capture (Fig. 2b) 
suggesting an inhibitory effect of acute stress on plasma 
UA. UA, a non-enzymatic antioxidant, may act as the 
first line of defense against the proliferation of free 

radicals (Cohen et  al. 2007). Increasing tissue uptake of 
UA during capture stress may, therefore, be especially 
beneficial with regard to improving antioxidant capacity 
(Cohen et al. 2007; Strazzullo and Puig 2007; Sautin and 
Johnson 2008; Deviche et al. 2014).

In birds, plasma cholesterol is obtained from the diet 
or hepatic production (Hazelwood 1972), and may 
preferentially be directed toward steroidogenesis (e.g., 
CORT, T, and estradiol) and spermatogenesis (Orgebin-
Crist and Tichenor 1973; Tift et al. 2011). To the best of 
our knowledge, our results provide the first evidence of 
reduced TC levels in response to capture stress, and of a 
positive correlation between baseline TC levels and UA 
levels in a free-living animal. These findings indicate that 
the regulation of cholesterol metabolism may be asso-
ciated with enhanced catabolism and oxidative stress 
response induced by the stress of capture. Although 

Fig. 3  Correlations between plasma corticosterone (CORT) and triglyceride (TG) measured 30 min of capture (a), and CORT and TG (b), glucose 
(Glu, c), and uric acid (UA, d) after 24 h in captivity in male and female Eurasian Tree Sparrows (Passer montanus), respectively
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this observation is consistent with reduced TC levels in 
humans suffering from depression (Partonen et al. 1999), 
the acute stress of immobilization did not affect the TC 
levels of experimental rats (Hershock and Vogel 1989). 
Why the TC levels of Eurasian tree sparrows decreased 
in conjunction with reduced UA levels and how this is 
physiologically related to the oxidative stress response 
remains unclear. Further research is therefore required to 
investigate the change in TC levels in response to capture 
stress in free-living animals.

Effects of 24‑h captivity stress
Eurasian Tree Sparrows experienced prolonged effects 
of the initial capture and restraint stress of captivity and 
underwent significant weight loss in captivity despite 
water and food were provided ad libitum. The underlying 
causes of weight loss may directly result from 24 h of cap-
tivity stress that not only subjected birds to the stress of 
confinement but also deprived them of their natural diet, 
which may have caused them to fast or reduce their food 
intake. Although we did not measure food consumption 
or energy expenditure, we found that plasma CORT lev-
els increased after 24  h in captivity. This result is con-
sistent with the reduced weight and elevated baseline 
CORT observed in captive, wild-caught Chukar (Alecto-
ris chukar) (Dickens et al. 2009), increased CORT levels 
and reduced body weight after 4‒10  h of fasting in the 
Zebra Finch (Taeniopygia guttata) (Lynn et al. 2010), and 
in Rock Pigeons (Columbia livia) after 24 h in captivity 
(Angelier et al. 2016). Reduced body weight is a hallmark 
of the elevated baseline CORT (Sapolsky et  al. 2000) 
secreted in response to the chronic stress associated with 
captivity, e.g., confinement, altered light conditions and 
diet (Morgan and Tromborg 2007).

GCs are known to inhibit TG synthesis and promote 
the availability of lipid energy from adipose tissue stores 
(Dallman 1993; Bentley 1998; Landys et  al. 2006), thus 
providing substrates for continued gluconeogenesis (Gré-
goire et  al. 1991; Landys et  al. 2004). Previous studies 
have shown increased plasma UA as a result of protein 
degradation after flight or exercise in some avian species 
(Shmueli et al. 2000; Jenni-Eiermann et al. 2002; Tsahar 
et  al. 2006). In addition, exogenous GCs have also been 
found to induce proteolysis and muscle atrophy in several 
species (Landys et al. 2006), which is critical for replen-
ishing amino acid substrates for gluconeogenesis. Along 
with elevated CORT, increased Glu and UA levels in con-
junction with reduced body weight, leads us to speculate 
that Eurasian Tree Sparrows relied heavily on gluconeo-
genesis and protein catabolism, during the 24 h they were 
in captivity. Given that 24  h of captivity did not induce 
the changes of TC and TG levels compared with their 
baseline levels in the field, whether the lipids catabolism 

was enhanced in response to captivity stress remains 
unclear.

Sexual differences in stress responses
There were no significant differences between the sexes 
with respect to changes in body mass, plasma CORT, 
Glu, TC, and UA levels following both capture and cap-
tivity. Furthermore, plasma CORT was not correlated 
with Glu and UA levels following capture stress. These 
results are consistent with those of previous studies that 
also found no sexual differences in acute CORT response 
to capture stress in this species during the breeding sea-
son (Li et al. 2008, 2011, 2016). This may reflect the fact 
that both male and female Eurasian tree sparrows incu-
bate eggs and feed nestlings (Summers-Smith 2014). 
However, sex-specific relationships between plasma 
CORT and metabolites after capture and 24 h in captiv-
ity (Table  2; Fig.  3) suggest condition-dependent varia-
tions between sexes, e.g., insufficient glucose, and thus 
enhanced protein degradation in the females, but not in 
male sparrows. The underlying cause of this sex-specific 
correlation between stress-induced CORT and, Glu, and 
UA levels remains to be further determined.

Our results show that female sparrows were not only 
in better condition but also had higher plasma TG lev-
els than males. Consistent with our results, male Canada 
Geese (Branta canadensis) during the spring post-migra-
tory phase also had significantly lower serum TG than 
females (Mori and George 1978). We further found that 
stress-induced (30  min post-capture) CORT levels in 
female sparrows were positively correlated with TG lev-
els whereas this correlation became negative after 24  h 
in captivity. This trend was not observed in male spar-
rows. Male sparrows have significantly higher baseline 
testosterone (T), which is thought to be a mediator of 
catabolism, than females during breeding (Li et al. 2012). 
It remains unclear if the higher TG levels of females can 
be explained by their better body condition when cap-
tured, and if such sex-specific differences are due to an 
interaction between energy metabolism and reproductive 
physiology.

Limitations
It should be pointed out that our experimental design 
does not permit us to determine whether or to what 
extent the initial capture stress contributed to the endo-
crine, and metabolic differences observed in the 24-h 
captivity. It is worthy of mentioning that, initial capture 
stress-induced elevated plasma Glu levels in Rufous-
winged Sparrows, which persisted until the following day 
when they were re-capture, but plasma CORT and UA 
levels returned to initial levels (Deviche et al. 2016b). As 
we mentioned above, the elevated Glu in Eurasian Tree 
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Sparrows observed here may have attributed to the com-
bined effects of initial capture stress followed by 24 h in 
captivity. How do initial capture stress influence on the 
plasma Glu and other metabolites on the following day in 
free-living Eurasian Tree Sparrows, remains to be further 
investigated.

Conclusions
In the present study, we identified that while the plasma 
CORT and Glu levels of free-living Eurasian Tree Spar-
rows increased significantly in response to capture stress, 
UA and TC levels decreased markedly. These results sug-
gest that wild animals can rapidly regulate their plasma 
CORT and metabolite levels when subject to acute stress. 
Furthermore, sparrows subject to 24-h captivity had 
decreased body mass but increased plasma CORT, Glu, 
and UA levels. Male sparrows had lower TG after capture 
and captivity than females, which indicates that there 
are sex-specific differences in the physiology of this spe-
cies. Overall, our results show that the stress of capture 
and captivity can have different effects on plasma CORT, 
metabolite levels in a passerine bird, which contributes 
to better understanding of the stress-induced pathways 
involved in sex-dependent energy mobilization. Our 
findings can also be applicable to illustrate the physiolog-
ical alterations of free-living birds, especially endangered 
specie when bringing them into captivity during the pro-
cess of ex situ conservation.

Additional file
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