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Weather conditions affect spring 
and autumn migration of Siberian leaf warblers
László Bozó1*  , Tibor Csörgő2 and Wieland Heim3

Abstract 

Background:  Weather effects on bird migration are well-studied among Passerines moving from Europe to Africa or 
within the American flyway systems. However, little is known about the weather impact on songbirds migrating along 
the East Asian flyway. Our study aims to describe the effects of various weather elements on the migration of four 
species of leaf warblers by using bird ringing data from a stopover site in Far East Russia.

Methods:  We determined the migration periods for each species and included maximum temperature, precipitation, 
air pressure, wind speed and wind direction in general linearized mixed models to predict the number of migrating 
birds.

Results:  We found strong impacts of weather variables on the number of trapped warblers during spring and 
autumn migration. Preferred or avoided weather conditions were similar among the studied species. All species seem 
to migrate preferably during warm, calm days without precipitation. A positive effect of tail winds was only confirmed 
in autumn, but in spring, most birds were trapped during crosswinds (eastern or western winds).

Conclusion:  The studied species might exhibit a loop migration, leading to a more longitudinal (from east to 
west) migration pattern in our study area during spring. Relationships between weather variables and the number 
of migrating individuals were much stronger during autumn. We argue that birds during spring migration would 
continue migration under sub-optimal conditions, as a result of strong competition to arrive earliest on their breeding 
grounds.
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Background
During migration birds face many challenges, including 
unfamiliar foraging and refuge habitats, resulting in a 
much higher rate of mortality during migration than dur-
ing other seasons of the year. Weather may significantly 
affect a bird’s decision to initiate migration, the course 
and pace of migration, and its survival during migration 
(Miller et  al. 2016). Favourable weather conditions for 
migration enhance the orientation of birds, reduce the 
use of energy for flying and increase the speed of migra-
tion (Emlen 1975; Bloch and Bruderer 1982; Gauthreaux 
1982; Akesson 1993; Liechti 2006; Shamoun-Baranes 
et  al. 2017). According to the majority of the studies, 

most migrations take place in windless, clear, anticy-
clonic weather conditions without precipitation, or with 
support of tail winds (Alerstam 1990; Gyurácz et al. 1997, 
2003; Bruderer and Boldt 2001; Erni et al. 2002). Favour-
able conditions can occur in different macrosynoptic 
weather situations (Kerlinger et  al. 1989). Atmospheric 
conditions are the primary extrinsic factors influencing 
decisions regarding migratory flights, particularly over 
water bodies with limited opportunities to land (Richard-
son 1990). Wind plays a critical role, affecting departure 
date and migratory directions, routes, speeds, flight dura-
tions, energy consumption and the crossing of ecological 
barriers (Cochran and Kjos 1985; Weber and Heden-
ström 2000; Pennycuick and Battley 2003; Cochran and 
Wikeski 2005; Bowlin and Wikelski 2008; Shamoun-
Baranes and van Gasteren 2011; Bulte et  al. 2014; Gill 
et al. 2014). Decisions to depart stopover sites and initiate 
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flight over large water bodies are also influenced by bar-
ometric pressure, temperature, relative humidity, and 
short-term trends in these variables, which are indicative 
of synoptic weather patterns and may provide informa-
tion about future weather conditions (Able 1972; New-
ton 2008). In case of tail winds, birds are capable of flying 
longer distances while exerting less energy (Emlen 1975; 
Bloch and Bruderer 1982; Gauthreaux 1982, 1991; Aler-
stam 1990; Richardson 1990; Bruderer and Boldt 2001). 
Weather conditions that delay migration include cloudy 
skies, poor visibility, strong winds (head winds and cross 
winds), and warm or occluded fronts (Akesson 1993; Pyle 
et al. 1993).

The relationship between the migration of birds and 
various weather elements or atmospheric conditions was 
studied mostly in Europe (Alerstam 1978, 1990; Akes-
son 1993; Erni et al. 2002; Schaub et al. 2004; Van Belle 
et al. 2007; Arizaga et al. 2011) and North America (Able 
1973; Emlen 1975; Kerlinger et  al. 1989; Deppe et  al. 
2015; Woodworth et al. 2015). However, few studies are 
available for the migration of Siberian species, providing 
only limited information on autumn and spring migra-
tion phenology of some species (Williams 2000; Bozó 
and Heim 2015, 2016; Bozó et al. 2016, 2017; Sander et al. 
2017), or focussing on their (irregular) occurrences in 
Europe (Rabøl 1969; Baker 1977; Folvik 1992; Berthold 
1996; Thorup 1998, 2004; Phillips 2000; Gilroy and Lees 
2003; Krüger and Dierschke 2004; Harrop 2007; De 
Juana 2008; Jiguet and Barbet-Massin 2013). However, to 
understand the causes of the European vagrancies, infor-
mation on migration phenology of this species related to 
local weather is necessary. Expanding this knowledge is 
not only important in understanding the causes of their 
vagrancy, but also for perspective conservation measures. 
Some of the East Asian migrants have declined dramati-
cally (Kamp et al. 2015), and local declines are noted even 
in common species, e.g. in wintering Yellow-browed 
Warblers (Phylloscopus inornatus) on Hainan Island (Xu 
et al. 2017).

This study aims to describe the effects of various 
weather elements on the numbers of migrating Siberian 
breeding Phylloscopus warbler species at a stopover site 
in Far East Russia.

Methods
The study was carried out within the Amur Bird Pro-
ject during spring (2013, 2015, 2016, 2017) and autumn 
(2011‒2014) migration at Muraviovka Park along the 
middle stream of the Amur River in the Russian Far 
East (Heim et al. 2012). The study site is located 60 km 
southeast of the city of Blagoveshchensk (49°55ʹ08.27ʺN, 
127°40ʹ19.93ʺE).

The study periods were the following: in 2011, from 7 
September to 15 October; in 2012, from 29 August to 15 
October; in 2013, from 25 April to 08 June and from 27 
July to 17 October; in 2014, from 25 July to 15 October; in 
2015, from 25 April to 10 June; in 2016, from 25 April to 
07 June, while in 2017, from 28 April to 08 June. During 
this period, in total 52 mist-nets were used for the work. 
Netting sites were not changed within season, however, 
the sampling effort varied among years (Table  1). The 
nets were set up in a variety of habitats: homogeneous 
reed-beds, sedges and grassy swamps interspersed with 
willows and raspberries, rich shrub-layered mixed forest, 
very dense scrub and stubble. The work was carried out 
daily from sunrise to sunset and the nets were checked 
every hour. In case of storm, heavy wind and rain, nets 
were closed.

Data analysis was carried out based on 6191 individu-
als of four species: Yellow-browed Warbler (Phylloscopus 
inornatus), Dusky Warbler (P. fuscatus), Radde’s Warbler 
(P. schwarzi) and Pallas’s Leaf Warbler (P. proregulus) 
(Table 2). All birds were marked with rings of the Mos-
cow Ringing Centre. Species identifications were based 
on Svensson (1992) and Brazil (2009). We only included 
data of first captures and excluded all recaptures.

To analyse the effects of weather for bird migration, 
we collected the following weather data for every day: 
minimum and maximum temperature (°C), precipita-
tion (mm), average air pressure (mb), average wind speed 
(Beaufort scale 0‒12), average wind direction (cross 
winds: E and W winds in spring and autumn; tail winds: 
N, NE and NW in autumn and S, SE and SW in spring; 
head winds: N, NE and NW in spring and S, SE and SW 
in autumn). Air pressure and precipitation data were 
gathered from the webpage of World Weather Online 
(World Weather Online 2017) for the area of Blagovesh-
chensk, while the remaining data were collected by the 
ringing teams at Muraviovka Park.

Table 1  Sampling effort between  2011‒2017 at  the  study 
site (total number of nets × daily mist-netting hours)

Year Season

Spring Autumn

2011 – 6161

2012 – 14,253

2013 9352 16,654

2014 – 31,235

2015 8204 –

2016 6710 –

2017 7729 –
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The migration periods are species-specific, therefore it 
was necessary to determine migration periods for each 
species. On the basis of the daily numbers caught, migra-
tion periods were determined for all studied species 
(Fig. 1). Only days within the migration period were con-
sidered in the following models.

General Linear Mixed Models (GLMM) were used to 
evaluate the weather impact on the number of trapped 
birds per day. Models were built for each species for 
both spring and autumn season. Year and Julian day 
were included as random factors. Minimum tempera-
ture was excluded from the models, as it was highly cor-
related with maximum temperature (R = 0.77, t = 30.2, 
df = 722, p < 0.001). The full models were of the following 
structure:

Furthermore, we built a model for all four species 
together, and included species as additional random 
factor as well. We checked for overdispersion using the 
dispersion-glmer function of the R package blmeco. For 

the number of birds trapped per day

∼ temperature + precipitation + air pressure

+ wind speed + wind direction + 1
∣

∣year + 1
∣

∣day .

analysis, R version 3.4.2 (R Core Team 2017) and pack-
ages lme4 (Bates et  al. 2014) and piecewiseSEM (Lef-
check 2016) were used.

Results
The migration periods of the four study species are 
shown in Table 2.

The GLMM for single species explained only a small 
part of the variability, with higher values during autumn 
migration (R2

marg: 0.07‒0.18) compared to spring migra-
tion (R2

marg: 0.03‒0.10). This was also true for the over-
all model, including all four species—see Table 3. Much 
more of the variance was explained by the random fac-
tors (R2

cond) (Table 3).
During spring, the most important factor for all spe-

cies is temperature, with significantly more birds trapped 
during warmer days. Furthermore, wind direction is a 
significant predictor in the overall model and in two out 
of four species models, with the highest number of birds 
trapped during cross winds.

In autumn, the number of trapped warblers is nega-
tively affected by precipitation and wind speed, while 
maximum temperature is positively related with the 
number of trapped individuals in the overall model and 

Table 2  Number of ringed birds for all study species and their migration periods at Muraviovka Park

Species Number of birds Migration period

Spring Autumn Spring Autumn

Yellow-browed Warbler 2275 1584 26 April‒6 June 26 July‒13 October

Dusky Warbler 497 1089 29 April‒9 June 26 July‒9 October

Pallas’s Leaf Warbler 79 369 29 April‒5 June 6 September‒17 October

Radde’s Warbler 81 217 9 May‒8 June 5 August‒26 September

Fig. 1  Spring (left) and autumn (right) migration periods of the four leaf warbler species
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Table 3  Outputs of general linear mixed models

Species Spring migration Autumn migration

Estimate χ2 p Estimate χ2 p

ALL Temperature 0.42 133.3 *** Temperature 0.22 18.4 ***

Precipitation 0.09 8.7 0.003 Precipitation − 0.53 121.4 ***

Air pressure ‒0.10 9.4 0.002 Air pressure − 0.25 39.3 ***

Wind speed 0.09 9.3 0.002 Wind speed − 0.29 65.6 ***

Wind direction 65.8 *** Wind direction 54.6 ***

    Headwind − 0.30     Headwind − 0.39

    Crosswind − 0.05     Crosswind − 0.17

    Tailwind − 0.72     Tailwind 0.08

R2
marg 0.03 R2

marg 0.12

R2
cond 0.82 R2

cond 0.84

Dusky Warbler Temperature 0.41 17.0 *** Temperature 0.35 16.9 ***

Precipitation 0.09 1.0 0.321 Precipitation − 0.50 37.7 ***

Air pressure − 0.01 0.0 0.861 Air pressure − 0.13 4.3 0.039

Wind speed 0.08 1.0 0.310 Wind speed − 0.09 2.4 0.121

Wind direction 17.0 *** Wind direction 18.8 ***

    Headwind 0.42     Headwind 0.29

    Crosswind 1.12     Crosswind 0.53

    Tailwind 0.08     Tailwind 0.76

R2
marg 0.09 R2

marg 0.18

R2
cond 0.75 R2

cond 0.84

Pallas’s Leaf Warbler Temperature 0.40 5.2 0.022 Temperature − 0.27 2.3 0.126

Precipitation 0.01 0.0 0.946 Precipitation − 0.24 2.2 0.137

Air pressure − 0.03 0.0 0.870 Air pressure 0.10 0.7 0.417

Wind speed 0.02 0.0 0.900 Wind speed − 0.43 13.1 ***

Wind direction 4.7 0.096 Wind direction 6.3 0.043

    Headwind − 1.11     Headwind − 2.05

    Crosswind − 0.34     Crosswind − 1.74

    Tailwind − 1.35     Tailwind − 1.51

R2
marg 0.09 R2

marg 0.07

R2
cond 0.34 R2

cond 0.71

Radde’s Warbler Temperature 0.56 8.9 0.003 Temperature 0.38 5.9 0.016

Precipitation 0.00 0.0 0.993 Precipitation − 0.45 8.5 0.004

Air pressure 0.01 0.0 0.932 Air pressure − 0.54 16.2 ***

Wind speed 0.13 0.7 0.399 Wind speed − 0.27 16.2 0.022

Wind direction 2.5 0.292 Wind direction 6.3 0.043

    Headwind − 1.12     Headwind − 2.07

    Crosswind − 1.17     Crosswind − 1.41

    Tailwind − 1.67     Tailwind − 1.77

R2
marg 0.10 R2

marg 0.13

R2
cond 0.44 R2

cond 0.70

Yellow-browed Warbler Temperature 0.44 118.6 *** Temperature 0.21 7.5 0.006

Precipitation 0.09 7.1 0.008 Precipitation − 0.57 68.7 ***

Air pressure − 0.14 16.4 *** Air pressure − 0.32 24.6 ***

Wind speed 0.08 6.6 0.010 Wind speed − 0.45 71.3 ***

Wind direction 46.1 *** Wind direction 27.6 ***

    Headwind 0.98     Headwind 0.39

    Crosswind 1.12     Crosswind 0.59

    Tailwind 0.57     Tailwind 0.89

R2
marg 0.03 R2

marg 0.18

R2
cond 0.94 R2

cond 0.92
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in three out of four species. Wind direction is an impor-
tant factor in all models, with most birds trapped during 
tail wind, and least birds during head winds. Air pressure 
was found to have minor impact on the numbers, but a 
negative relation was found in three out of four species.

Discussion
During our work, the effects of air pressure, rainfall, 
temperature, wind strength and wind direction were 
investigated for four species. We found strong impacts 
of weather variables on the number of trapped warblers 
during spring and autumn migration. Overall, preferred 
or avoided weather conditions were similar among the 
studied species, but some slight differences were found.

All species seem to migrate preferably during warm, 
calm days without precipitation in spring and autumn 
too. It is important to note that in case of intense rainy 
weather, mist-nets were closed for the safety of the birds, 
but there would certainly not have been a significant 
amount of bird in these days. The fact, that the maxi-
mum temperature is positively related with the number 
of trapped individuals in the overall model and in three 
out of four species is certainly associated with the timing 
of migration.

Previous studies have shown that the migration peak 
of most species coincides with days of high air pressure 
(Alerstam 1990; Gyurácz et al. 1997). On such days, there 
is constant sunshine and low temperatures. In Siberia, a 
high anti-cyclone reigns from September to April, with 
its centre near Lake Baikal. This Siberian cycle is often 
characterized by high air pressures above 1040  mb and 
extremely low temperatures (Oliver 2005). In spring, 
however, the effects of cyclones are characterized by high 
precipitation and high temperature values. In contrast, 
air pressure was found to have minor impact on the num-
bers of trapped warblers both during spring and autumn 
migration, but a slight negative relation was found in 
three out of four species in autumn. This suggests that 
the studied species seem to migrate independently from 
the air pressure.

Both the strength and the direction of the wind can 
be decisive in the timing of migration (Elkins 1988). In 
stormy winds, mist-netting is not possible, but as dur-
ing heavy rains, few birds are expected to fly during such 
conditions. Accordingly, the number of birds of all spe-
cies and the strength of wind were negatively correlated 
in spring and autumn migration.

In autumn, in cases of a northerly wind (tail wind), 
birds are known to fly longer distances while exerting 

less energy (Emlen 1975; Bloch and Bruderer 1982; 
Gauthreaux 1982, 1991; Alerstam 1990; Richardson 
1990). Accordingly, we would expect the highest num-
bers of migrating birds in autumn during northern tail 
winds and in spring during southern tail winds. How-
ever, a positive effect of tail winds was only confirmed 
in autumn. Tail winds were a good predictor in case of 
Dusky and Yellow-browed Warblers in autumn, which 
may support the weather hypothesis, according to which 
some authors explain the westward vagrancy of Siberian 
leaf warblers species by the effect of the weather (Baker 
1977; Howey and Bell 1985; Baker and Catley 1987). 
It is interesting to note that in spring, most birds were 
trapped during cross winds (eastern or western winds). 
It seems likely, that the studied warbler species exhibit a 
loop migration, with their spring migration routes closer 
to the East Asian coasts, leading to a more longitudinal 
migration pattern (from east to west) in our study area 
during spring (Fig. 2). The Wood Warbler (Phylloscopus 
sibilatrix) and Willow Warbler (Ph. trochilus), well-stud-
ied European breeding species, show also loop migration 
(Gyurácz and Csörgő 2009; Jónás et  al. in press), and a 
similar pattern was found for geolocator-tracked Siberian 
Rubythroats (Calliope calliope) along the East Asian fly-
way (Heim et al. 2018a).

Despite the significant impacts of the weather vari-
ables, most of the variation was explained by interannual 
differences and preferred migration timing. The studied 
species are likely mainly following their innate migration 
schedule. Consistent migration timing between years was 
also found for Emberiza buntings at our study site (Heim 
et  al. 2018b). This might especially be true for spring 
migration, when competition is high to arrive early at the 
breeding grounds (Nilsson et al. 2013), which could force 
individuals to continue migration under sub-optimal 
weather conditions.

Global change is expected to significantly alter weather 
conditions in Far East Russia (Mokhov and Semenov 
2016) and a better understanding of how these factors 
could influence migratory birds is urgently required.

Conclusion
During our work we found strong impacts of weather var-
iables (air pressure, rainfall, temperature, wind strength 
and wind direction) on the number of trapped warblers 
during spring and autumn migration. Birds seem to 
migrate preferably during warm, calm days without pre-
cipitation, however, relationships between weather varia-
bles and the number of migrating individuals were much 

Table 3  (continued)
Estimates refer to the slope related to the variables, but represent the mean for categorical variables (wind direction, in italics). Shown are test statistics, R2

marg (fixed 
factors alone) and R2

cond (fixed + random factor). p values below 0.001 are marked as ***
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stronger during autumn. Air pressure was found to have 
minor impact on the numbers of trapped warblers, while 
the strength and the direction of wind were important 
variables. Tail winds play an important role in autumn, 
but in spring migration was determined by cross winds, 
which indicates that the studied species might exhibit a 
loop migration.
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