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Abstract 

Background:  Wild birds are considered to be reservoirs of human enteric pathogens and vectors of antimicrobial 
resistance dissemination in the environment. During their annual migration, they play a potential role in the epidemi-
ology of human associated zoonoses. The aim of this study was to investigate the frequency of isolation and antimi-
crobial susceptibility profiles of microorganisms found in the cloaca of common European passerines.

Methods:  One hundred and twenty-one cloacal swabs were collected during a monitoring program of migratory 
birds in the Forest Reserve for Protection “Metaponto” (Basilicata, Italy). All samples were cultured using standard bac-
teriological methods and antibiotic susceptibility testing (agar disk diffusion test) of isolated strains was performed.

Results:  The bacteriological analysis produced 122 strains belonging to 18 different species. The most commonly 
isolated species were Enterobacter cloacae and Providencia rettgeri (21 strains, 17.2%). Potentially pathogenic species 
including Klebsiella pneumoniae, Serratia marcescens and Pseudomonas spp. have also been identified. Isolates showed 
significant frequencies of antimicrobial resistance. The highest frequency of resistance was observed against amoxicil-
lin (n = 79, 64.8%); ampicillin (n = 77, 63.1%); rifampicin (n = 75, 61.5%); amoxicillin–clavulanic acid (n = 66, 54.1%). 
Thirty-one strains (25.4%) showed resistance to imipenem and 8 (6.6%) to meropenem.

Conclusions:  Migratory birds play an important role in the ecology, circulation and dissemination of potentially 
pathogenic antimicrobial resistant organisms. They can therefore be considered sentinel species and environmental 
health indicators. Our results suggest that the integration of epidemiological surveillance networks during ringing 
campaigns of wild species can be an effective tool to study this phenomenon.
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Background
Several studies have shown that migratory wild birds play 
an important role in the ecology, circulation and dissemi-
nation of enteric human pathogens such as Campylo-
bacter, Salmonella, toxin-producing Escherichia coli and 

antimicrobial resistant organisms (Reed et al. 2003; Abul-
reesh et al. 2007; Foti et al. 2011; Magda et al. 2013).

Although these birds come rarely in contact with anti-
microbial agents, they could serve as reservoirs and 
potential disseminators of resistant bacteria in the envi-
ronment through fecal depositions (Guenther et  al. 
2010; Jarhult et al. 2013; Shobrak and Abo-Amer 2015). 
Resistant bacteria of human and veterinary origin are 
believed to be transmitted to wild birds through contam-
inated food or water (Abulreesh et  al. 2007; Bonnedahl 
et al. 2009; Guenther et al. 2010; Radhouani et al. 2012). 
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Residues of antibiotics and bacteria carrying antibiotic 
resistance may be introduced into the environment due 
to the spread of manure from medicated livestock and 
urban effluents into agricultural land (Blanco et al. 2009). 
At rest sites, birds of different species often congregate 
and the horizontal transmission of pathogens occurs 
due to interindividual and interspecies contact (Hubàlek 
2004), including interaction with sedentary birds.

Furthermore, heavy stress and immunosuppression 
related to migration could promote the onset of infec-
tious diseases and the spread of infectious agents. Other 
factors contributing to the prevalence of resistant bac-
terial strains in wild birds are the environmental con-
tamination, the presence of livestock and human density 
(Skurnik et  al. 2006; Allen et  al. 2010). Several studies 
have shown a wide spread of antibiotic resistant entero-
bacteria in bird populations sympatric to areas inhab-
ited by people and areas with a high density of livestock 
(Camarda et  al. 2006; Literak et  al. 2010; Elmberg et  al. 
2017).

Most of the information regarding bacterial enter-
opathogens in wild birds stems from the application of 
traditional microbiological techniques adapted to the 
study of those species that are most likely to affect human 
health. In a previous research carried out by Giacopello 
et  al. (2016) the most frequently diffused resistances 
among Enterobacteriaceae isolated from passerines in a 
wildlife rescue centre in Sicily were found to be trimetho-
prim/sulfamethoxazole (100%), streptomycin (56.2%), 
amoxicillin/clavulanic acid (62.5%), ampicillin (50%) 
and tetracycline (31.2%) (Giacopello et al. 2016). Strains 
of Escherichia spp. isolated from migratory wild birds 
from different areas of Saudi Arabia displayed resistance 
to chloramphenicol (100%), oxytetracycline (100%), cip-
rofloxacin (87.5%), ampicillin (75%), cefaclor (62.5%), 
cephalexin (62.5%) and amoxicillin (50%) (Shobrak and 
Abo-Amer 2015). Guenther et  al. (2010) evaluated the 

susceptibility of 187 Escherichia coli isolates from 226 
European wild birds (117 of which belonging to the order 
Passeriformes) to different antimicrobials and found 
resistance to ampicillin, cephalotin, tetracycline and neo-
mycin in 60, 46.6, 46.6 and 33.3% of the isolates, respec-
tively (Guenther et al. 2010).

In 2010, the Territorial Office for Biodiversity of the 
Italian Forestry Corps had set up a monitoring program 
in the Forest Reserve for Protection “Metaponto”, located 
in the Matera province (Italy), with the aim of studying 
the migratory avifauna along the Ionian Basilicata Coast. 
The research activities are becoming especially intense 
during autumn, when several species of migratory pas-
serines (especially intrapaleartic) stop to rest in extended 
formations of Mediterranean maquis and in the remain-
ing retrodunal wetlands.

During the tracking season a population of migratory 
birds has been subjected to health evaluation through 
various laboratory tests. The study aimed to acquire 
new data about the bacterial flora of migratory popula-
tions passing through Italy by focusing on the isolation 
of Enterobacteriaceae and by recording the eventual 
presence of pathogens in all captured specimens. Fur-
thermore, the antimicrobial susceptibility of the iso-
lated strains was tested in order to highlight the possible 
spread of the antimicrobial resistance in animals that, 
surely, have never received therapeutic protocols and can 
therefore be considered environmental sentinels.

Methods
Sampling
The catches were made near the mouth of the river 
Bradano using 276 m of mist-net 12 × 2, kept open from 
dawn to dusk and monitored every hour.

In 121 subjects belonging to the Order Passeriformes 
(Table  1) cloacal swabs were obtained by inserting a 
sterile culture swab impregnated with buffered peptone 

Table 1  Classification of sampled avian species

Family Common name Scientific name Number of samples

Emberizidae Reed Bunting Emberiza schoeniclus (Linnaeus, 1758) 1

Fringillidae Chaffinch Fringilla coelebs (Linnaeus, 1758) 2

Sylviidae Chiffchaff Phylloscopus collybita (Vieillot, 1817) 6

Firecrest Regulus ignicapilla (Temminck, 1820) 1

Eurasian Blackcap Sylvia atricapilla (Linnaeus, 1758) 39

Turdidae European Robin Erithacus rubecula (Linnaeus, 1758) 68

Blackbird Turdus merula (Linnaeus, 1758) 2

Song Thrush Turdus philomelos (Brehm, 1831) 2

Total 121
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water (Oxoid, Basingstoke, UK) into the cloaca and gen-
tly rotating the tip against the mucosa.

Laboratory procedures
Bacterial isolation and identification
Samples were transported in refrigeration conditions 
to the laboratory of Microbiology of the Department of 
Veterinary Sciences, University of Messina (Italy) and 
then submitted to standard bacteriological examination 
for detection of Enterobacteriaceae. After an enrichment 
in buffered peptone water, the samples were streaked 
into MacConkey Agar plates (Oxoid, Basingstoke, 
Hampshire, UK) using sterile loops. Isolates were sub-
cultured in Blood Agar plates for identification by mass 
spectrometry MALDI–TOF (matrix assisted laser des-
orption/ionisation–time of flight mass spectrometry). 
The isolated colonies were seeded in a 48-well metal 
plate with disposable loops, using as a reference strain 
Escherichia coli ATCC 8739. The results were analyzed 
with the VITEK MS system (bioMérieux SA, Marcy 
l’Etoile, France), using the software Axima (Shimadzu 
Kyoto, Japan)-SARAMIS database (Spectral ARchive 
And Microbial Identification System) (AnagnosTec, Ber-
lin, Germany).

Antimicrobial susceptibility testing
Antimicrobial susceptibility testing of the bacterial iso-
lates was performed by disk diffusion method (Bauer 
et al. 1966) on Mueller–Hinton agar (Oxoid, Basingstoke, 
UK) in accordance to international standards (CLSI 
2013). Susceptibility to 18 antimicrobial agents belong-
ing to 9 antibiotics classes was evaluated: amikacin (AK, 
30 μg), amoxicillin (AML, 30 μg), amoxicillin/clavulanic 
acid (AUG, 30  μg), ampicillin (AMP, 10  μg), aztreonam 
(ATM, 30 μg), cefotaxime (CTX, 30 μg), cefotaxime/cla-
vulanic acid (CTL, 40 μg), ceftazidime (CAZ, 30 μg), cef-
tazidime/clavulanic acid (CAL, 40 μg), ciprofloxacin (CIP, 
5 μg), enrofloxacin (ENR, 5 μg), gentamicin (CN, 10 μg), 
imipenem (IMI, 10  μg), meropenem (MEM, 10  μg), 
rifampicin (RD, 30 μg), tetracycline (TE, 30 μg), tobramy-
cin (TOB, 10 μg), trimethoprim/sulfamethoxazole (SXT, 
50 μg) (Liofilchem, Teramo, IT). Isolates were considered 
resistant or susceptible according to the manufactur-
er’s instructions based on CLSI guidelines (Liofilchem® 
2016). Isolates showing intermediate susceptibility were 
considered as resistant. Strains were considered multid-
rug resistant (MDR) when showing resistance to three or 
more antimicrobial classes (Schwarz et al. 2010).

Statistical analysis
The statistical analysis of the results was made using the 
z-test. Differences were considered significant at values 
of p < 0.05.

Results
Bacterial isolation and identification
One hundred and twenty-two strains were isolated. Of 
these 114 belonged to 10 different genera and 8 were uni-
dentified (Table 2).

The most commonly isolated species were Providen-
cia rettgeri (23 strains, 18.9%), Enterobacter cloacae 
(21 strains, 17.2%) and Leclercia adecarboxylata (16 
strains, 14.7%). Potentially pathogenic species including 
Klebsiella pneumoniae, Serratia marcescens and Pseu-
domonas spp. have also been identified.

There were no significant differences in the frequencies 
of microorganism among the most common bird species 
(Table 3).

Antimicrobial susceptibility testing
Isolates displayed significant frequencies of antibiotic 
resistance (Table 4).

Twenty-four strains showed resistance to more than 
50% of the tested molecules. The resistance patterns 
varied from one to sixteen of the antibiotics tested. 
The resistance to amoxicillin (n  =  79, 64.8%) was the 
most frequent, followed by ampicillin (n  =  77, 63.1%), 
rifampicin (n  =  75, 61.5%) and amoxicillin–clavulanic 
acid (n = 66, 54.1%).

Table 2  Identification of bacterial species

Isolated species Number of strains

Aeromonas spp. 1

Aeromonas punctata 3

Citrobacter spp. 6

Citrobacter braaki 1

Citrobacter farneri 2

Citrobacter freundii 4

Enterobacter spp. 4

Enterobacter asburiae 2

Enterobacter cancerogenus 8

Enterobacter cloacae 21

Enterobacter cowanii 1

Hafnia alvei 4

Klebsiella oxytoca 2

Klebsiella pneumoniae 2

Leclercia spp. 2

Leclercia adecarboxylata 16

Proteus mirabilis 1

Providencia rettgeri 23

Pseudomonas putida 2

Pseudomonas stutzeri 2

Serratia liquefaciens 1

Serratia marcescens 6

Unidentified 8

Total 122
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Table 4  Number of resistant strains for single molecules and single bacterial species

Class Antibiotics Bacterial speciesa Total number of resistant strains

Aminoglycosides Amikacin Citrobacter farneri (1)
Citrobacter freundii (3)
Enterobacter asburiae (1)
Enterobacter cancerogenus (2)
Enterobacter cloacae (6)
Hafnia alvei (1)
Klebsiella pneumoniae (1)
Leclercia adecarboxylata (2)
Providencia rettgeri (6)
Pseudomonas putida (1)
Serratia marcescens (1)

25 (20.5%)

Gentamicin Citrobacter freundii (3)
Citrobacter spp. (2)
Enterobacter asburiae (1)
Enterobacter cancerogenus (2)
Enterobacter cloacae (6)
Klebsiella oxytoca (1)
Klebsiella pneumoniae (1)
Leclercia adecarboxylata (2)
Providencia rettgeri (1)
Pseudomonas putida (1)

20 (16.4%)

Tobramicina Citrobacter freundii (2)
Citrobacter spp. (1)
Enterobacter cancerogenus (3)
Enterobacter cloacae (7)
Klebsiella oxytoca (1)
Klebsiella pnemoniae (1)
Leclercia adecarboxilata (3)
Providencia rettgeri (3)
Serratia marcescens (1)

22 (18%)

Cephalosporins Cefotaxime Citrobacter freundii (1)
Enterobacter asburiae (1)
Enterobacter cancerogenus (3)
Enterobacter cloacae (6)
Klebsiella pneumoniae (1)
Providencia rettgeri (3)
Pseudomonas putida (1)

16 (13.1%)

Cefotaxime–clavulanic acid Citrobacter freundii (2)
Enterobacter asburiae (1)
Enterobacter cancerogenus (2)
Enterobacter cloacae (6)
Klebsiella pneumoniae (1)
Providencia rettgeri (3)
Pseudomonas putida (1)

16 (13.1%)

Ceftazidime Citrobacter farneri (1)
Citrobacter freundii (2)
Citrobacter spp. (1)
Enterobacter asburiae (1)
Enterobacter cancerogenus (3)
Enterobacter cloacae (8)
Klebsiella pneumoniae (1)
Leclercia adecarboxylata (2)
Providencia rettgeri (4)
Pseudomonas putida (1)

24 (19.7%)

Ceftazidime–clavulanic acid Citrobacter farneri (1)
Citrobacter freundii (2)
Citrobacter spp. (1)
Enterobacter asburiae (1)
Enterobacter cancerogenus (3)
Enterobacter cloacae (8)
Klebsiella pneumoniae (1)
Providencia rettgeri (7)
Pseudomonas putida (1)

25 (20.5%)
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Table 4  continued

Class Antibiotics Bacterial speciesa Total number of resistant strains

Carbapenems Imipenem Citrobacter farneri (1)
Citrobacter freundii (2)
Citrobacter spp. (1)
Enterobacter asburiae (2)
Enterobacter cancerogenus (4)
Enterobacter cloacae (9)
Klebsiella pneumoniae (1)
Leclercia adecarboxylata (2)
Providencia rettgeri (7)
Pseudomonas putida (1)
Serratia marcescens (1)

31 (25.4%)

Meropenem Enterobacter cancerogenus (2)
Enterobacter cloacae (1)
Leclercia adecarboxylata (2)
Providencia rettgeri (2)
Pseudomonas putida (1)

8 (6.6%)

Fluoroquinolones Ciprofloxacin Citrobacter freundii (2)
Citrobacter spp. (2)
Enterobacter cancerogenus (1)
Enterobacter cloacae (6)
Klebsiella pneumoniae (1)

12 (9.8%)

Enrofloxacin Citrobacter freundii (2)
Citrobacter spp. (2)
Enterobacter cancerogenus (1)
Enterobacter cloacae (1)
Klebsiella oxytoca (1)
Klebsiella pneumoniae (1)
Leclercia adecarboxylata (1)
Providencia rettgeri (2)
Pseudomonas putida (1)
Serratia marcescens (2)

14 (11.5%)

Monobactams Aztreonam Citrobacter farneri (1)
Citrobacter freundii (1)
Citrobacter spp. (1)
Enterobacter asburiae (1)
Enterobacter cancerogenus (4)
Enterobacter cloacae (7)
Klebsiella oxytoca (1)
Providencia rettgeri (5)
Pseudomonas putida (1)
Pseudomonas stutzeri (1)
Serratia marcescens (1)
Non-identified (1)

25 (20.5%)

Penicillins Amoxicillin Aeromonas punctata (1)
Aeromonas spp. (1)
Citrobacter farneri (2)
Citrobacter freundii (4)
Citrobacter spp. (3)
Enterobacter asburiae (2)
Enterobacter cancerogenus (8)
Enterobacter cloacae (18)
Enterobacter cowanii (1)
Enterobacter spp. (4)
Hafnia alvei (1)
Klebsiella oxytoca (2)
Klebsiella pneumoniae (2)
Leclercia adecarboxylata (6)
Proteus mirabilis (1)
Providencia rettgeri (12)
Pseudomonas putida (1)
Serratia marcescens (5)
Non-identified (5)

79 (64.8%)
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Table 4  continued

Class Antibiotics Bacterial speciesa Total number of resistant strains

Amoxicillin–clavulanic acid Aeromonas punctata (1)
Aeromonas spp. (1)
Citrobacter farneri (2)
Citrobacter freundii (4)
Citrobacter spp. (3)
Enterobacter asburiae (2)
Enterobacter cancerogenus (8)
Enterobacter cloacae (17)
Enterobacter spp. (4)
Hafnia alvei (1)
Klebsiella pneumoniae (1)
Leclercia adecarboxylata (3)
Providencia rettgeri (12)
Pseudomonas putida (1)
Serratia marcescens (3)
Non-identified (3)

66 (54.1%)

Ampicillin Aeromonas punctata (1)
Aeromonas spp. (1)
Citrobacter farneri (1)
Citrobacter freundii (4)
Citrobacter spp. (2)
Enterobacter asburiae (1)
Enterobacter cancerogenus (8)
Enterobacter cloacae (18)
Enterobacter cowanii (1)
Enterobacter spp. (4)
Hafnia alvei (1)
Klebsiella oxytoca (2)
Klebsiella pneumoniae (2)
Leclercia adecarboxylata (5)
Proteus mirabilis (1)
Providencia rettgeri (15)
Pseudomonas putida (1)
Pseudomonas stutzeri (1)
Serratia marcescens (4)
Non-identified (4)

77 (63.1%)

Rifamycins Rifampicin Aeromonas punctata (1)
Citrobacter farneri (2)
Citrobacter freundii (4)
Citrobacter spp. (5)
Enterobacter asburiae (2)
Enterobacter cancerogenus (7)
Enterobacter cloacae (16)
Enterobacter cowanii (1)
Enterobacter spp. (4)
Hafnia alvei (3)
Klebsiella oxytoca (1)
Klebsiella pneumoniae (2)
Leclercia adecarboxylata (10)
Leclercia spp. (1)
Providencia rettgeri (9)
Pseudomonas putida (1)
Pseudomonas stutzeri (1)
Serratia marcescens (4)
Non-identified (2)

76 (61.5%)

Sulfonamides Trimethoprim/sulfamethoxazole Citrobacter freundii (1)
Enterobacter cloacae (2)
Leclercia adecarboxylata (1)
Providencia rettgeri (7)
Pseudomonas stutzeri (1)
Non-identified (3)

15 (12.3%)
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Thirty-one strains (25.4%) showed resistance to imipe-
nem and 8 (6.6%) to meropenem. Multidrug resistance 
occurred in 35/122 strains (28.7%). Among strains resist-
ant to the cephalosporins none showed a phenotypic 
ESBL profile. Nine strains were susceptible to all tested 
molecules. Some bacterial species have shown resistance 
against numerous molecules (Table 5).

Particularly, Enterobacter cloacae has shown resistance 
to 18 molecules (100%); Enterobacter cancerogenus, Cit-
robacter freundii and Providencia rettgeri to 17 molecules 
(94.4%); Pseudomonas putida to 15 molecules (83.3%); 
Klebsiella pneumoniae to 14 molecules (77.8%); Citrobac-
ter spp., Enterobacter asburiae and Leclercia adecarboxy-
lata to 13 molecules (72.2%). There were no significant 
differences in the percentage of resistant bacteria among 
the different bird species (Table 6).

Discussion
Bacteriological analysis led to the isolation of a wide 
range of bacterial species. Several of the isolated bacte-
ria, such as K. pneumoniae, Enterobacter spp., Proteus 
spp., Providencia spp. and Citrobacter spp., are known 
to cause diseases in avian species, as well as in mam-
mals and humans (Reslinski et  al. 2005; Pindi et  al. 
2013).

Unlike previous studies on wild birds, no strains of 
Salmonella spp. and Escherichia coli have been iso-
lated (Hubàlek 2004; Benskin et al. 2009; Guenther et al. 
2010; Matias et  al. 2016). This result might partially be 
explained because of diet, as these species were most 
commonly found in surveys of omnivorous birds as 
well as carnivorous birds (Bangert et  al. 1988), whereas 
graminivorous birds, such as many passerines, had much 
lower prevalence (Glunder 1981; Brittingham et al. 1988; 
Steele et  al. 2005). Antimicrobial susceptibility test-
ing revealed a wide spread of strains resistant to some 
of the molecules tested. The percentage of resistance to 

penicillins is consistent with the results obtained by other 
authors (Guenther et  al. 2010; Shobrak and Abo-Amer 
2015; Giacopello et al. 2016).

The intake of water polluted with faeces or human 
waste and the acquisition via food seem to be the sources 
of transmission of resistant bacteria of human and vet-
erinary origin to wild birds (Reed et al. 2003; Pindi et al. 
2013; Pinto et al. 2015). Birds not only acquire pathogens 
from the environment, but also return them via excre-
tion, potentially facilitating the dissemination of patho-
genic organisms to both humans and other animals, 
especially through water (Benskin et al. 2009; Wellington 
et al. 2013). However, further epidemiological studies are 
necessary to gain a more detailed understanding of the 
transmission modality of resistant bacteria to wild birds 
and their spreading into the environment (Guenther et al. 
2010; Radhouani et al. 2012).

Of particular concern is the detection of resistance 
against two molecules belonging to the family of carbap-
enems, normally used only in human clinical practice as a 
last resort for treating infections caused by antimicrobial 
resistant bacteria. It is unclear how wildlife can acquire 
such resistance. Different hypotheses have been proposed 
on the phenomenon’s genesis, including the great adapt-
ability of bacteria to a variety of environmental displays, 
their rapid reproduction, the possibility of genetic mate-
rial exchange among different species and, especially, an 
intensive use of antibiotics for the treatment of infections 
both in human and veterinary medicine. Several studies 
have shown that soil bacteria can represent an important 
reservoir of antibiotic resistance determinants, including 
carbapenemases (Gudeta et al. 2015; Nesme and Simonet 
2015).

Our results from Passeriformes with an absence of 
ESBL-producing bacteria are in agreement with other 
similar studies carried out in Portugal (Silva et al. 2010) 
and in Sweden (Jarhult et al. 2013).

Table 4  continued

Class Antibiotics Bacterial speciesa Total number of resistant strains

Tetracyclines Tetraciclina Citrobacter freundii (2)
Citrobacter spp. (1)
Enterobacter asburiae (1)
Enterobacter cancerogenus (3)
Enterobacter cloacae (8)
Klebsiella oxytoca (1)
Leclercia adecarboxylata (3)
Proteus mirabilis (1)
Providencia rettgeri (21)
Pseudomonas putida (1)
Serratia marcescens (4)
Non-identified (2)

48 (39.3%)

a  In the brackets are the numbers of resistant strains
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Conclusions
The results of the present study confirmed that migra-
tory wild birds play an important role in the ecology and 
circulation of potential zoonotic pathogens. Monitor-
ing antibiotic resistance in wildlife represents a useful 
method of evaluating the impact of anthropic pressure 
(Thaller et  al. 2010). Furthermore, because migratory 
birds are recognized as potential reservoirs of pathogenic 
agents, these birds can be regarded as sentinel species 
and used as environmental health indicators. All these 
considerations stimulate discussion about the advantages 
of an integrated monitoring policy of humans, animals 
and the environment for the antibiotic resistance control 
(Köck et al. 2017).
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