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Abstract 

Background:  Geographic variation in body size is assumed to reflect adaptation to local environmental conditions. 
Although Bergmann’s rule is usually sufficient to explain such variation in homeotherms, some exceptions have been 
documented. The relationship between altitude, latitude and body size, has been well documented for some verte-
brate taxa during the past decades. However, relatively little information is available on the effects of climate variables 
on body size in birds.

Methods:  We collected the data of 267 adult Eurasian Tree Sparrow (Passer montanus) specimens sampled at 48 
localities in China’s mainland, and further investigated the relationships between two response variables, body mass 
and wing length, as well as a suit of explanatory variables, i.e. altitude, latitude, mean annual temperature (MAT), 
annual precipitation (PRC), annual sunshine hours (SUN), average annual wind speed (WS), air pressure (AP) and rela-
tive humidity (RH).

Results:  Our study showed that (1) although the sexes did not differ significantly in body mass, males had longer 
wings than females; (2) body mass and wing length were positively correlated with altitude but not with latitude; (3) 
body mass and wing length were negatively correlated with AP and RH, but not significantly correlated with WS. Body 
mass was positively correlated with SUN and inversely correlated with MAT. Wing length was not correlated with MAT 
in either sex, but was positively correlated with SUN and negatively correlated with PRC in male sparrows; (4) variation 
in body mass could be best explained by AP and SUN, whereas variation in wing length could be explained by RH and 
AP in both sexes. In addition, variation in male sparrows can be explained by SUN, WS and PRC but not in females.

Conclusions:  Two different proxies of body size, body mass and wing length, correlated with same geographic fac-
tors and different climate factors. These differences may reflect selection for heat conservation in the case of body 
mass, and for efficient flight in the case of wing length.
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Background
Body size is arguably the most important trait affecting 
the physiology and ecology of animals (Schmidt-Nielsen 
1984; Lomolino and Perault 2007; Kingsolver and Huey 
2008). Intraspecific, geographic variation in body size 
is assumed to reflect adaptation to local environmental 

conditions (Mayr 1956; Millien et al. 2006; Yom-Tov and 
Geffen 2011). Bergmann’s rule, which postulates that 
individuals from cooler regions tend to be larger than 
congeners from warmer regions (McNab 1971), is com-
monly invoked to explain such variation in both home-
otherms (McNab 1971; Blackburn and Ruggiero 2001; 
Ashton 2002a; Lin et al. 2008; Martinez et al. 2013) and 
ectotherms (Ashton 2002b; Jin et  al. 2006; Pincheira-
Donoso et al. 2008; Jaffe et al. 2016). This rule has been 
corroborated by data on numerous bird and mammal 
species in the past few decades; however, a few notable 
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exceptions have been documented (reviewed by Ashton 
2002a and Meiri and Dayan 2003).

Both increasing altitude and latitude are generally nega-
tively correlated with temperature (Blackburn et al. 1999; 
Potapov 2004; Keller et  al. 2013). Previous studies have 
demonstrated a positive relationship between body size 
and latitude in both birds and mammals (Ashton 2002a; 
Meiri and Dayan 2003; Gardner et  al. 2009; Olson et  al. 
2009). However, limited information is available on alti-
tudinal variation in body size (Hamilton 1961; Blackburn 
and Ruggiero 2001; Chown and Klok 2003; Wilson et  al. 
2010; Gutiérrez-Pinto et  al. 2014). Although latitudinal 
and altitudinal gradients show similar temperature trends 
(Ashton and Feldman 2003), some climate factors, such 
as solar radiation, air pressure (AP) (or oxygen concentra-
tion), are more strongly associated with variation in alti-
tude than latitude (Liao et al. 2006; Körner 2007, also see 
Additional file 1: Table S1). The effects of such climate fac-
tors on body size could be as, or more, important than the 
effects of temperature (Liao et al. 2006; Zhao et al. 2013).

McNab (2010) argued that vertebrates become larger 
or smaller geographically depending on the abundance, 
availability and size of resources, and termed this pat-
tern as the “resource rule”. Food availability (i.e. quantity 
and quality of nutrition, often use net primary produc-
tivity as proxy), especially during the growth period, is a 
crucial predictor determining the final body size, which 
is impacted directly or indirectly by some abiotic fac-
tors such as solar radiation, precipitation, humidity and 
temperature and others (Rosenzweig 1968; Yom-Tov and 
Geffen 2011).

It was well known that animals at high altitude must 
adapt to the stress of lower AP (or oxygen concentration) 
relative to sea level and still sustain aerobic metabolic 
processes. Although animals inhabiting higher altitudes 
generally have higher energy demands for cold surround-
ings (Snyder 1981; Chappell et al. 1988), limited oxygen 
availability might decrease digestive efficiency and thus 
affect negatively their body size. This mechanism has 
been demonstrated in geographic size variation in liz-
ards and mammals (Jin et al. 2006, 2007; Liao et al. 2006). 
However, there is little available information on the effect 
of AP on body size in birds.

Wind speed (WS) has two aspect functions on the body 
size of an animal. In addition to imposing a thermoregu-
latory constraint on organisms along with ambient tem-
perature (wind chill effect, Goldstein 1983), strong wind 
also cause animals, especially flyers, to consume more 
energy during flight (Bowlin and Wikelski 2008). There-
fore, many flying vertebrates and invertebrates modify 
their wing length or shape to avoid the negative impacts 
brought by high WS. For example, the elytra and wings 
of grasshoppers in the Tibetan Plateau have degenerated 

or even disappeared (Yin 1984). Wing length of European 
Storm Petrels (Hydrobates pelagicus) tends to increase at 
high latitudes perhaps in response to local ambient tem-
perature and WS (Jakubas et al. 2014).

Species with large geographic ranges are more likely to 
exhibit geographic clines in body size (Meiri et al. 2007) 
because they encounter, and must adapt to, a diverse 
gradient of environmental conditions throughout their 
range. This is especially true of sedentary birds (Meiri 
and Dayan 2003). From this perspective, the Eurasian 
Tree Sparrow (P. montanus), a species resident within a 
vast geographic range that includes both low and high 
altitude areas of the Eurasian continent (Fu et  al. 1998; 
Summers-Smith 2009), is an ideal candidate for the study 
of geographic variation in body size. In this study, we 
present data on altitudinal and latitudinal variation in 
body mass and wing length in Chinese populations of the 
Eurasian Tree Sparrow and use these data to determine 
whether Bergmann’s rule applies to this species. In addi-
tion, we analyze the relationships between body mass, 
wing length and selected climate factors, including mean 
annual temperature (MAT), annual precipitation (PRC), 
annual sunshine hours (SUN), annual average WS, AP 
and relative humidity (RH) and determine which of these 
factors are likely to have the greatest effect on body mass 
and wing length in the Eurasian Tree Sparrow.

Methods
Data collection
This study was based on Eurasian Tree Sparrow speci-
mens housed at the National Zoological Museum of 
China, Beijing. Body mass, wing length, sex, acquisition 
time and sites [latitude (°), longitude (°) and altitude (m)] 
of each individual were extracted from the records of the 
original collection. In order to ensure the accuracy and 
reliability of the data, individual birds with worn feathers, 
or those that were collected during the pre-basic molt 
stage and breeding stage were excluded from our sam-
ple. In the end, we had obtained the body mass and wing 
length measurements of 267 adult specimens (153 males 
and 114 females) sampled between 1960 and 1980 at 48 
localities in China’s mainland at altitudes ranging from 
−130 to 4370 m above the sea level and at latitudes rang-
ing from 26°04′N to 52°04′N (Additional file 1: Table S2).

Because body mass and wing length would be expected 
to be related to climate conditions in the year in which 
specimens were collected (Yom-Tov et  al. 2006), we 
obtained climate data for the sampling sites in the years 
in which specimens were collected from the China 
Meteorological Data Sharing Service System (http://
data.cma.gov.cn/site/index.html). These climate data 
included MAT, PRC, SUN, WS, AP and RH (Additional 
file  1: Table S2). Of these, MAT, PRC, SUN and RH 
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were significantly correlated with altitude and latitude, 
whereas AP was only correlated with altitude and WS 
only with latitude (Additional file 1: Table S1).

Statistical analysis
We conducted one-sample Shapiro–Wilk test and Lev-
ene’s test to determine whether data conform to normal 
distribution and homogeneity of variances. Since body 
mass and wing length may be affected by gender (Fair-
nbairn et  al. 2007), we ran linear mixed-effect models 
(LME) fitted with the restricted maximum likelihood 
(REML) method using the lme function of nlme pack-
age in Program R v. 3.2.2 (Pinheiro et al. 2015) to exam-
ine the fixed effects of sex (as dummy variable) on body 
mass and wing length, while accounting for collection 
site and individual identity as random effects. We fur-
ther examined the relationship between body mass and 
wing length for each gender. LME fitted with the REML 
method was also used to examine the fixed effects of 
each geographic/climatic factor on body mass/wing 
length while accounting for collection site and individ-
ual identity as random effects. These statistical analyses 
were performed using Program R v. 3.2.2. The data are 
presented as mean ± SE.

We ran a generalized linear model (GLM) using the glm 
function in Program R v. 3.2.2 to model the relationship 
between body mass or wing length and AP, PRC, SUN, 
WS, RH and MAT. Because male sparrows had longer 
wings than females (see “Results” sect.), we analyzed the 
relationship between wing length and other factors for 
males and females separately. We used Akaike’s Informa-
tion Criterion (AIC) to select the best model(s). Multi-
parameter models were discarded if a nested model 
(collinearity among the climate factors), containing a 
subset of the same parameters, had a better AIC score 
(Arnold 2010). All possible models within 95% cumula-
tive AIC weight for body mass and wing length were 
selected and averaged to identify the most important 
variables using the importance score in the Program R v. 
3.2.2 MuMIn package (Kamil 2013).

Results
Although there was no significant difference in body 
mass between the sexes (t = −0.444, p =  0.675), male 
sparrows had longer wings than females (t  =  −4.473, 
p  <  0.001; Fig.  1a). Therefore, data on body mass were 
pooled for analysis whereas wing length data were ana-
lyzed separately for each sex (Table  1). Body mass was 
positively correlated with wing length in each sex (male: 
t = 3.856, p < 0.001; female: t = 4.459, p < 0.001; Fig. 1b). 
Body mass and wing length in both sexes were positively 
correlated with altitude, but were not significantly corre-
lated with latitude (Table 1, Fig. 2a, b).

Among the six climate factors examined, body mass 
and wing length were negatively correlated with AP, and 
RH, but not significantly with WS in either sex (Table 1; 
Figs.  3a, b, 4a, b). Body mass was negatively correlated 
with MAT and positively correlated with SUN (Table 1; 
Fig.  3c, d). Wing length was not significantly corre-
lated with MAT in either sex, nor with PRC and SUN in 
females, but was positively correlated with SUN and neg-
atively correlated with PRC in males (Table 1; Fig. 4c, d).

AP, SUN and PRC were the best predictors of body 
mass, explaining 50% of all variation in this variable 
(Additional file  1: Table S3). Of these factors, AP and 
SUN were the most important (Table  2). In males, AP, 
PRC, RH, SUN and WS were the best predictors of 
wing length, explaining 50% of all variation in this vari-
able (Additional file 1: Table S3). The relative importance 
coefficients of these five factors were all greater than 0.6 
(Table  2). However, in females, RH, AP and PRC were 
the best predictors explaining 32% of all variation in this 
variable (Additional file 1: Table S3). Of these, RH and AP 
were the most important climate factors (Table 2).

Discussion
Geographic and climatic variation in body mass and wing 
length
Consistent with Bergmann’s rule, we found that Eurasian 
Tree Sparrows were heavier at higher altitudes, with a 
negative correlation between body mass and MAT. This 
trend has also been reported in a number of sedentary 
and migratory bird species, such as House Sparrows 
(Passer domesticus; Johnston and Selander 1973), Crested 
Duck (Lophonetta specularioides; Bulgarella et al. 2007), 
Torrent Duck (Merganetta armata; Gutiérrez-Pinto et al. 
2014) and some Andean passerine birds (Blackburn and 
Ruggiero 2001), but not in the Rufous-necked Snow-
finch (Montifringilla ruficollis; Lu et  al. 2009). From a 
thermoregulatory viewpoint, increased body mass could 
be an adaptation to colder temperatures (Gardner et  al. 
2009; Teplitsky and Millien 2014); the reduced surface 
area to volume ratio of larger-bodied individuals means 
that they lose proportionately less heat than smaller-bod-
ied birds (Mayr 1956, 1963; Blackburn et al. 1999).

In the present study, we found a positive relationship 
between wing length and body mass in both sexes, while 
both surrogates of body size were positively correlated 
with altitude. In birds, wing length is commonly con-
sidered an index of lean body mass (Nolan and Ketter-
son 1983), so the increased body mass at higher altitudes 
could be mainly the result of an increase in wing size and 
flight muscle (Sun et al. 2016), or an increase in the size 
of metabolic and respiratory organs, i.e. the heart and 
lungs (Hartman 1955; Carey and Morton 1976; Sun et al. 
2016).
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From the point of view of ambient temperature, ani-
mals should exhibit a uniform body size cline along with 
latitude and altitude (Ashton and Feldman 2003). How-
ever, the increasing body size of Eurasian Tree Sparrow 
was only accompanied with rising altitude, but not with 
latitude. The different trends in body mass and wing 
length with increasing altitude or latitude suggest that 
climate factors other than temperature could have an 
important effect on body size. For example, variation in 
AP or oxygen concentration is directly affected by alti-
tude, but rarely by latitude. We found an inverse correla-
tion between AP and both body mass and wing length. 
As mentioned in the introduction, there is a dilemma that 
maximum metabolic rates of birds will decrease when 

they are under low oxygen concentration and increase 
when they are stressed by low environmental tempera-
tures. The lower wing loadings of longer wings can offset 
the increased energy requirements incurred by the lower 
air density at higher altitudes (Swaddle and Lockwood 
2003; Altshuler and Dudley 2006). Birds living at higher 
altitudes typically have a larger heart and lungs in order 
to provide adequate oxygen to meet metabolic require-
ments, especially the requirements of flight (Hartman 
1955; Carey and Morton 1976; Monge and Leon-Velarde 
1991; Scott 2011). The hearts and lungs of Eurasian Tree 
Sparrows collected at higher altitudes were heavier than 
those of conspecifics collected at lower altitudes (Sun 
et  al. 2016). This suggests that the positive correlations 

Fig. 1  Sexual size dimorphism in wing length and body mass in Passer montanus. a Mean male and female wing length (mean ± SE, the asterisk 
represents a statistically significant difference between the sexes). b Relationship between wing length and body mass (males: df = 151, t = 3.856, 
p < 0.001, open circles and dashed lines; females: df = 112, t = 4.459, p < 0.001, black dots and solid lines)

Table 1  Correlations between body mass or wing length of P. montanus and geographic and climate factors

Estimate model coefficients, df degree of freedom, MAT mean annual temperature, PRC annual precipitation, SUN annual sunshine hours, WS annual average wind 
speed, AP air pressure, RH relative humidity. Data on the body mass of each sex were pooled but wing length data were analyzed separately for each sex

Variable Statistical 
parameter

Altitude Latitude MAT AP PRC SUN RH WS

Body mass

df 218 218 46 46 46 46 46 46

Estimate 0.001 −0.026 −0.123 −0.010 −0.001 0.002 −0.070 0.422

t 4.125 −0.518 −2.243 −4.088 −1.542 2.751 −2.768 1.138

p <0.001 0.605 0.026 <0.001 0.130 0.006 0.006 0.261

Wing length

Male df 113 113 37 37 37 37 37 37

Estimate 0.001 −0.052 −0.004 −0.009 −0.003 0.002 −0.129 0.167

t 2.972 −0.868 −0.060 −2.643 −2.884 4.065 −5.407 0.341

p 0.004 0.388 0.952 0.012 0.007 <0.001 <0.001 0.735

Female df 77 77 34 34 34 34 34 34

Estimate 0.001 −0.123 0.052 −0.009 −0.001 0.000 −0.067 −0.557

t 2.811 −2.014 0.682 −2.807 −0.559 0.325 −2.027 −1.031

p 0.006 0.050 0.497 0.008 0.580 0.746 0.046 0.310
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Fig. 2  Correlations between body mass or wing length of P. montanus and altitude. a Body mass vs altitude (df = 218, t = 4.125, p < 0.001), b wing 
length versus altitude (male: df = 113, t = 2.972, p = 0.004, open circles and dashed lines; female: df = 77, t = 2.811, p = 0.006, black dots and solid 
lines)

Fig. 3  Correlations between body mass of P. montanus and climate factors. a Air pressure (df = 46, t = −4.088, p < 0.001), b relative humidity 
(df = 46, t = −2.768, p = 0.006), c mean annual temperature (df = 46, t = −2.243, p = 0.026) and d annual sunshine hours (df = 46, t = 2.751, 
p = 0.006), at collection sites
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between body mass or wing length and altitude may not 
only reflect adaptations to reduce energy consumption, 
but also to ensure an adequate oxygen supply.

We found that SUN was positively correlated with 
both wing length (only for males) and body mass in the 
Eurasian Tree Sparrow. A sufficient amount of sunshine 
is conducive to improving food availability by increas-
ing net primary productivity (Churkina and Running 
1998; Yom-Tov and Geffen 2011) and raising plant 
nutrient levels (Potapov 2004). Increased food availabil-
ity is generally associated with an increase in body size 
(Yom-Tov and Nix 1986; Aava 2001; Yom-Tov and Gef-
fen 2006, 2011). The Eurasian Tree Sparrow is a typical 
omnivorous passerine and mainly feeds on grass seeds, 
fruits and small insects (Fu et  al. 1998). Higher sun-
shine hours per year would not only provide sparrows 
with more abundant and more nutritious foods, but also 
extend their available foraging time, thereby making it 
easier for the birds to accumulate energy and gain body 
mass.

Unexpectedly, we found that RH was negatively corre-
lated with wing length and body mass and that PRC was 
negatively correlated with wing length of male sparrows. 
A similar trend has been reported in the Crested Lark 
(Galerida cristata; Guillaumet et al. 2008). One explana-
tion for this may be the necessity to minimize water loss 
in cold, dry environments (James 1970; Burnett 1983; Lin 
et al. 2008). Because the rate of water loss mainly depends 
on the relative surface area of an organism and its meta-
bolic rate (Chew 1955; Chew and Dammann 1961; Lin 
et  al. 2008), it follows that small-bodied individuals are 
more vulnerable to acute dehydration than large-bodied 
ones (Hamilton 1958, 1961; James 1970; Olalla-Tárraga 
et al. 2009; McKechnie and Wolf 2010).

There was no any correlation between WS and body 
mass. However, WS is one of most important climate 
factors for explaining wing length in male but not in 
female Eurasian Tree Sparrows. Previous studies have 
reported mixed patterns of the effect of WS on body 
mass, e.g. positive correlation in Gray Jays (Perisoreus 

Fig. 4  Correlations between wing length of P. montanus and climate factors. a Air pressure (male: df = 37, t = −2.643, p = 0.012; female: df = 34, 
t = −2.087, p = 0.008), b relative humidity (male: df = 37, t = −5.407, p < 0.001; female: df = 34, t = −2.027, p = 0.046), c annual precipitation 
(males: df = 37, t = −2.884, p = 0.007; female: df = 34, t = −0.559, p = 0.580), and d annual sunshine hours (males: df = 37, t = 4.605, p < 0.001; 
female: df = 34, t = 0.325, p = 0.746), at collection sites. Data on males are shown as open circles and dashed lines and those on females as black 
dots and solid lines
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canadensis; Waite 1992), negative correlation in Euro-
pean Storm Petrels (Hydrobates pelagicus; Jakubas 
et  al. 2014), or no correlation in the Dovekie (Alle alle; 
Wojczulanis-Jakubas et  al. 2011). In general, relatively 
longer wings can increase flight efficiency (Lockwood 
et  al. 1998); many species, especially in migratory or 
insectivorous birds, are characterized by long wings for 
gliding and soaring in strong air currents (Landmann 
and Winding 1995; Lockwood et  al. 1998; Nowakowski 
2000). Given that little information is available on the 
effects of WS and flight ability for this sedentary passer-
ine bird, further investigation of such interspecific and 
gender differences in flight efficiency are needed to clar-
ify the inconsistent results.

Among the six climate factors, only AP and SUN were 
important with respect to variation in body mass. RH 
and AP were the most important with respect to varia-
tion in wing length in both male and female sparrows. 
In addition, SUN, WS and PRC were the most impor-
tant in males but not in females. Therefore, altitudinal 
and latitudinal variation in body mass and wing length 
in the Eurasian Tree Sparrow appears to be affected by 
a combination of climate factors and sexual selection. 
Unexpectedly, although there was a significant correla-
tion between body mass and MAT, the latter was not a 

reliable predictor of body mass in our statistical model. 
Since we were not able to obtain a satisfactory answer, 
we deem it necessary to conduct further research on this 
aspect.

Sexual size dimorphism in body mass and wing length
The Eurasian Tree Sparrow is generally considered sexu-
ally monomorphic. However, although we found no sig-
nificant difference in body mass between the sexes, males 
had longer wings than females. These results are consistent 
with those obtained for other populations or other sub-
species of the Eurasian Tree Sparrow (St. Louis and Bar-
low 1991; Mónus et  al. 2011; Sun et  al. 2016). Although 
sexual displays in birds require much energy (Gil and 
Gahr 2002; Ward and Slater 2005), male Eurasian Tree 
Sparrows can behave in the same intensity during autum-
nal sexual recrudescence as they commonly do at pre-
breeding (García-Navas et al. 2008; Pinowski et al. 2009). 
That is, as in the spring, males sing and display in the fall, 
compete for territories, attract females, build nests and 
copulate with females (García-Navas et  al. 2008; Pinow-
ski et al. 2009). The longer wings in males are thought to 
reduce the flight costs incurred in sexual display (Møller 
1991; Hedenstrom and Møller 1992). Therefore, sexual size 
dimorphism in wing length in the Eurasian Tree Sparrow 

Table 2  Coefficients of averaged models explaining body mass and wing length (male and female) in relation to climate 
factors

Estimate average model coefficients, SE unconditional standard errors, Lower CI and Upper CI the 95% confidence limits, AP air pressure, PRC annual precipitation, SUN 
annual sunshine hours, RH relative humidity, WS annual average wind speed, MAT mean annual temperature

More information for top-ranked models are shown in Additional file 1: Table S3

Variable Factor Estimate SE P value Lower CI Upper CI Relative 
importance

Body mass

(Intercept) 24.181 2.493 <0.001 19.287 29.075

AP −0.008 0.001 <0.001 −0.010 −0.005 1.00

SUN 0.002 0.001 0.001 0.001 0.003 0.96

PRC 0.001 0.001 0.453 0.0004 0.003 0.54

Wing length

Male (Intercept) 57.864 4.750 <0.001 48.517 67.211

SUN 0.002 0.001 0.018 0.001 0.004 0.97

WS −0.740 0.428 0.085 −1.537 −0.141 0.88

RH −0.099 0.052 0.057 −0.182 −0.051 0.85

AP −0.004 0.003 0.149 −0.009 <0.001 0.84

PRC 0.002 0.001 0.256 0.000 0.005 0.68

MAT 0.022 0.054 0.688 0.054 0.229 0.15

Female (Intercept) 66.425 2.666 <0.001 61.158 71.693

RH −0.130 0.060 0.030 −0.248 −0.012 1.00

AP −0.006 0.003 0.063 −0.012 −0.003 0.85

PRC 0.001 0.002 0.502 −0.001 0.007 0.47

WS −0.376 0.529 0.479 −1.798 0.118 0.45

MAT −0.035 0.089 0.691 −0.384 −0.084 0.15
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may reflect male-specific reproductive behavior and in 
spite of it, this may also covary with a number of other 
morphological traits (see Table  1 in Mónus et  al. 2011). 
Furthermore, female birds are more susceptible to preda-
tors because they incubate or brood the nest, although the 
short wings of some female passerines may enhance their 
maneuverability and help them escape predation (Swaddle 
and Lockwood 2003; Bomberger and Brown 2011).

Conclusions
 Geographic variation in body mass and wing length in the 
Eurasian Tree Sparrow is generally consistent with Berg-
mann’s rule. Body mass and wing length is positively cor-
related with altitude, but not with latitude, suggesting that 
the body size of sparrows is more affected by other climate 
factors than by MAT. Most variation in body mass can be 
explained by AP and SUN, whereas significant variation in 
wing length can be best explained by RH and AP in both 
males and females. In addition, variation in male sparrows 
can be explained by SUN, WS and PRC but not in females. 
Two proxies of body size, i.e. body mass and wing length, 
displayed different strengths and polarities of correlation 
with the same geographic and climate factors. These dif-
ferences may reflect competing selection pressures for 
heat conservation, flight efficiency and sexual selection.
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