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Abstract 

Background:  Historically the babblers have been assigned to the family Timaliidae but several recent studies have 
attempted to rest the taxonomy of this diverse passerine assemblage on a more firm evolutionary footing. The result 
has been a major rearrangement of the group. A well-supported and comprehensive phylogeny for this widespread 
avian group is an important part of testing evolutionary and biogeographic hypotheses, especially in Asia where the 
babblers are a key component of many forest ecosystems. However, the genus Liocichla is poorly represented in these 
prior studies of babbler systematics.

Methods:  We used a multilocus molecular genetic approach to generate a phylogenetic hypothesis for all five cur‑
rently recognized species in the avian genus Liocichla. Multilocus DNA sequence data was used to construct individ‑
ual gene trees using maximum likelihood and species trees were estimated from gene trees using Bayesian analyses. 
Divergence dates were obtained using a molecular clock approach.

Results:  Molecular data estimate a probable window of time for the origin for the Liocichla from the mid to late 
Miocene, between 5.55 and 12.87 Ma. Despite plumage similarities between the insular Taiwan endemic, L. steerii, and 
the continental L. bugunorum and L. omeiensis, molecular data suggest that L. steerii is the sister taxon to all continen‑
tal Liocichla. The continental Liocichla are comprised of two lineages; a lineage containing L. omeiensis and L. buguno-
rum and a lineage comprised of L. phoenicea and L. ripponi. The comparatively early divergence of L. steerii within the 
Liocichla may be illusory due to extinct and therefore unsampled lineages. L. ripponi and L. phoenicea are parapatric 
with a Pleistocene split (0.07–1.88 Ma) occurring between an Eastern Himalayan L. phoenicea and a Northern Indo‑
china distributed L. ripponi. L. bugunorum and L. omeiensis underwent a similar split between the Eastern Himalaya (L. 
bugunorum) and Central China (L. omeiensis) divided by the Hengduan Mountains.

Conclusions:  This study supports an origin of the Liocichla occurring sometime prior to the Miocene–Pliocene 
boundary, a period of significant climatic upheaval in Asia. The biogeographical patterns within the Liocichla mirror 
those of other birds in the region and allude to common geological and climatic drivers of avian diversification in Asia.
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Background
The babblers are a morphologically and ecologically 
diverse group of some 300 species and over 800 named 
taxa of predominantly tropical Old World passerines, 

with the exception of the New World Wrentit (Chamaea 
fasciata) [1]. As a prominent component of the forest 
biotas in tropical and subtropical Asia, babblers are a 
potential model system for investigating ecological, evo-
lutionary and biogeographic hypotheses [2]. However, 
developing a robust phylogeny for this diverse group is 
a necessary prerequisite for integrating the group into 
broader evolutionary and biogeographic studies. Given 
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the number of species as well as their morphological and 
ecological diversity and high degree of character conver-
gence this goal is not without its challenges but recent 
work has made considerable progress in imposing some 
taxonomic rigor on this diverse group [3–14].

Babblers have traditionally been assigned a family status 
(Timaliidae) but that taxonomic status has never rested 
on a solid foundation [2, 15–17]. The Timaliidae have 
been called a taxonomic “dustbin” [1] or a “scrap basket” 
[18] and recent phylogenetic analyses highlight the taxo-
nomic problems associated with this group (reviewed by 
Alström et al. [4]). Stachyris and Alcippe are polyphyletic 
[7, 11, 19], Pomatorhinus and Actinodura are paraphyl-
etic [8, 9, 11], Pteruthius and Erpornis are actually vireos, 
Vireonidae [6, 13, 20], Pnoepyga has been suggested to 
be placed in a separate family, Pnoepygidae [4, 5, 10, 21] 
and the traditional babbler genus Yuhina is allied with 
the Zosteropidae [7, 10, 11]. Alström et  al. [5] supports 
the removal of Elachura formosa (previously Spelaeornis 
formosus) not just from an affiliation with the babblers 
but from the Sylvioidea superfamily entirely and into its 
own monotypic family, Elachuridae. Gelang et al. [10] has 
recognized five clades encompassing the babblers with 
four assigned the rank of subfamily (Leiothrichinae, Pel-
lorneinae, Timaliinae and Zosteropinae) within a mono-
phyletic Timaliidae that is sister to Sylviidae. Fregin et al. 
[21], Alström et al. [4, 5] and Gill and Donsker [22] elevate 
each of the subfamilies within the Timaliidae sensu Gel-
ang et al. [10] to the rank of family whereas Moyle et al. 
[11] treat Leiothrichinae, Pellorneinae, Timaliinae as sub-
families within Timaliidae and Zosteropidae and Sylviidae 
at the family level. While these studies have made great 
strides in elucidating the family-level relationships, the 
scope of the family has created a logistical hurdle to creat-
ing a comprehensive molecular phylogeny.

One babbler genus that has been incompletely sampled 
in prior studies is Liocichla. Five species are currently rec-
ognized in the genus: Liocichla phoenicea (Red or Crim-
son-faced Liocichla), L. ripponi (Scarlet-faced Liocichla), 
L. bugunorum (Bugun Liocichla), L. omeiensis (Grey-
cheeked Liocichla) and L. steerii (Steere’s Liocichla) [23, 
24]. These species fall within the Leiothrichidae sensu (Gill 
and Donsker [22]) and are closely allied with the genera 
Actinodura, Heterophasia, Leiothrix, and Minla [6, 10, 11].

Three of the five species within the Liocichla are 
restricted range species (Fig.  1). L. bugunorum is a 
recently described taxon with a very limited range in 
the Northeast Indian state of Arunachal Pradesh [25]. 
L. omeiensis is a Chinese endemic also with a very lim-
ited range primarily confined to Sichuan Province [1, 
24]. L. omeiensis is considered vulnerable with a decreas-
ing population trend [26] and while data on L. buguno-
rum are currently insufficient for an accurate population 

assessment, its restricted range and limited number of 
sightings likely indicate that it too is vulnerable [1, 24, 
27]. L. steerii is an island endemic confined to the island 
of Taiwan with plumage reminiscent of L. bugunorum 
and L. omeiensis [1, 24, 28].

The more geographically widespread L. phoenicea 
has historically been split into four subspecies with L. 
p. phoenicea in the Eastern Himalayas and Northeast 
Assam, L. p. bakeri in Southern Assam, Western and 
Northern Myanmar and Northwestern Yunnan, L. p. 
ripponi in Eastern Myanmar, Northwestern Thailand 
and Southwestern Yunnan and L. p. wellsi in Southeast-
ern Yunnan and Northern Indochina [29]. Collar’s [23] 
examination of plumage characters and Dickinson and 
Christidis [24] elevates L. p. ripponi and L. p. wellsi to 
recognition as a single species (L. ripponi) and L. p. phoe-
nicea and L. p. bakeri are likewise united into a single 
species (L. phoenicea). In addition to being distinguished 
by plumage L. phoenicea and L. ripponi sensu Collar [23] 
are also parapatric with L. phoenicea occupying the more 
Northwestern portion of the distribution of L. phoenicea 
sensu lato in Northern and Western Myanmar, Eastern 
India, Nepal and Western Yunnan and L. ripponi occu-
pying South and Southeastern Myanmar, Southwestern 
Yunnan, Northwestern Thailand, Northeastern Guangxi 
and extreme North Vietnam and Laos with the two spe-
cies’ distributions approximately divided in Myanmar 
by the Myitnge River ([1], Fig.  1) albeit with potential 
exchange occurring across a narrow contact zone in this 
region of Eastern Myanmar [23].

No babbler molecular phylogeny to date has included 
all Liocichla species. Luo et al. [30] included L. steerii and 
L. omeiensis, Gelang et al. [10] and Dong et al. [9] each 
included only L. steerii, and Cibois [6] and Moyle et  al. 
[11] included L. steerii and L. phoenicea (albeit in the 
case of L. phoenicea with samples from different popula-
tions that Collar [23] would delimit as belonging to dif-
ferent species). Generating a robust molecular phylogeny 
for Liocichla that includes all currently recognized taxa 
would be a valuable piece of the babbler puzzle and may 
provide a point of comparison for broader studies of spe-
ciation and biogeography in Asia. A reliable and compre-
hensive phylogeny for the babblers is particularly relevant 
for elucidating the history of continental island biotas in 
Asia such as those in Taiwan, Hainan, Indochina and the 
Greater Sunda islands and for the biotas associated with 
the uplift of the Himalayas [31–33].

Methods
Sampling and laboratory methods
We obtained DNA sequence data from all five species 
of Liocichla currently recognized by Collar and Robson 
[1]  and Gill and Donsker [22]. Sequence data for cytb 
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(KJ456321.1) and ND2 (KJ455478.1) derived from L. 
bugunorum were generated in a previous study [33] while 
the remainder of our samples originated from speci-
men vouchered frozen tissue samples. Samples from the 
genera Minla and Leiothrix, the putative closest extant 
relatives of Liocichla [11], were obtained and used as 
outgroups. Two samples of L. ripponi were derived from 
specimens of captive origin in the Louisiana State Uni-
versity Museum of Natural History (LSUMZ) collection 
originally determined as L. phoenicea (LSUB20702 and 
LSU37270). Only one of these samples was associated 
with a skin while the other was associated with skeletal 
material. The single skin available for the LSUMZ cap-
tive specimen exhibited diagnostic plumage consistent 
with L. ripponi (grey crown, scarlet face extending above 
the eye, grey underparts, terminal bar on the rectrices; 
[1, 23]. These two specimens from LSUMZ were nearly 
identical genetically to each other and nearly genetically 
identical to a field collected L. ripponi collected from 
China (KU10078). For two ingroup samples (L. phoenicea 
KU15195 and L. ripponi KU10078) and three outgroup 
samples (Leiothrix argentauris KU15203, Leiothrix lutea 
KU6724 and Minla ignotincta KU11346) sequence data 
were available from prior studies. We re-sequenced these 
same samples for this study and use these data in our 
analysis but cite the Genbank accession numbers from 
the prior work as our sequences were shorter and did not 

differ significantly from the original Genbank submis-
sions (Additional file  1: Table  S1). Voucher information 
for all samples is available in Table 1.

Whole genomic DNA was extracted using a standard 
phenol–chloroform protocol followed by ethanol pre-
cipitation. The mitochondrial encoded cytochrome b 
and NADH dehydrogenase subunit 2 (ND2) were ampli-
fied for all ingroup and outgroup samples across all taxa 
and the mitochondrial encoded NADH dehydrogenase 
subunit 3 (ND3) gene was amplified from all ingroup and 
outgroup samples except for L. bugunorum. Conserved 
autosomal nuclear intron loci including introns from 
a magmas-like protein (12630), phosphotyrosyl phos-
phatase (14572), and myeloid leukemia factor 2 (23361) 
described in Backström et  al. [34], intron 5 from trans-
forming growth factor β2 (TGFB2, [35]) and intron 5 
from β-fibrinogen (Fib5, [36]) were also amplified. In 
cases where primers derived from the available literature 
failed to amplify all samples we constructed Liocichla-
specific internal primers based on sequence alignments 
from Liocichla and outgroup sequences.

Common sequence tags, either CS1 (5′-ACACTGACG 
ACATGGTTCTACA) in the forward direction or 
CS2 (5′-TACGGTAGCAGAGACTTGGTCT) in the 
reverse direction, were added to all the oligonucleotide 
sequences in this study. Oligonucleotide tags are com-
monly used to facilitate the addition of adapters and 

Fig. 1  Map of ingroup sampling locations and distributions of taxa. Distributions based on Collar and Robson [1].
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barcodes to amplicons for next-generation sequencing 
[37]. In our study the addition of common 5′ tags allowed 
for CS1 and CS2 to be utilized as sequencing primers for 
all amplicons across all loci. A complete list of the oligo-
nucleotide sequences used as PCR primers in this study 
and their properties may be found in Table 2.

Polymerase chain reaction (PCR) was performed in 
10 μL reactions with Fidelitaq™ Master Mix (Affymetrix/
USB) and forward and reverse primers (0.5  μmol  L−1 
each; Integrated DNA Technology) using a thermal pro-
file of 94°C for 4  min followed by 30 cycles of 1  min at 
94°C, 1 min at 50°C, and 2 min at 72°C, and then a final 
extension cycle for 10  min at 72°C. The same thermal 
profile was utilized for all PCRs across all loci. Primers 
and excess dNTPs were inactivated with ExoSAP-IT®  
(Affymetrix/USB) following the manufacturer’s instruc-
tions. Sequencing reactions were performed on ExoSAP-
IT® treated PCR amplicons using BigDye® v3.1 Cycle 
Sequencing Kit (Life Technologies). Unincorporated 
BigDye® terminators were removed from sequenc-
ing reactions using the BigDye Xterminator® kit (Life 

Technologies) and cleaned sequencing products were 
separated on a 3130 Genetic Analyzer (Life Technolo-
gies). PCR amplicons were sequenced in both directions 
with primers based on the common sequence tags incor-
porated into all amplicons (CS1 and CS2). Complemen-
tary strands were aligned and edited using Geneious 
v8.1.4 (Biomatters, available from http://www.geneious.
com [42]). Chromatograms were inspected individually 
and every variation was checked for authenticity. The 
phase of nuclear alleles was determined computation-
ally using the PHASE v2.1 [43] algorithms implemented 
in DnaSP v5 [44]. All sequences have been deposited in 
NCBI GenBank (Additional file 1: Table S1).

Phylogenetic analysis
We looked for evidence of recombination using the  
Φw-statistic [45] implemented in the program SplitsTree 
v4.10 [46]. The Φw-statistic distinguishes recombination 
from recurrent mutation. We tested for selection using 
the Hudson–Kreitman–Aguade (HKA) test [47] imple-
mented in DnaSP v5 [44]. We selected the best-fit model 

Table 1  Associated data for tissue/blood samples for ingroup (Liocichla sp.) and outgroup (Leiothrix argentauris, Leiothrix 
lutea and Minla ignotincta) genetic samples

a  Specimen of captive origin with taxon determination made by examination voucher specimen plumage.

Catalog number Loaning institution Taxon Country Locality Latitude Longitude

DT30 (feather sample) Wildlife Institute of India, 
Dehradun

Liocichla bugunorum India Eaglenest Wildlife Sanctuary, 
Arunachal Pradesh

27.150 92.464

1X51 Chinese Academy of Sciences Liocichla omeiensis China Emei Mountain, Sichuan 
Province

29.52 103.33

KU15195 University of Kansas Biodiver‑
sity Institute

Liocichla phoenicea Myanmar Jed Lwe 26.181 98.334

KU10078 University of Kansas Biodiver‑
sity Institute

Liocichla ripponi China Guangxi, Diding Headwater 
Nature Preserve

23.122 105.963

LSUB20702 Louisiana State University 
Museum of Natural History

Liocichla ripponi Captivea

LSUB37270 Louisiana State University 
Museum of Natural History

Liocichla ripponi Captivea

TESRI5635 Taiwan Endemic Species 
Research Institute

Liocichla steerii Taiwan Hwalien, Hsiow-Lin, Pilu 24.182 121.308

TESRI5636 Taiwan Endemic Species 
Research Institute

Liocichla steerii Taiwan Hwalien, Hsiow-Lin, Kuanyun 24.186 121.340

TESRI5708 Taiwan Endemic Species 
Research Institute

Liocichla steerii Taiwan Nantou, Hsini, Wan Hsiang 23.619 120.928

TESRI5714 Taiwan Endemic Species 
Research Institute

Liocichla steerii Captivea

TESRI5768 Taiwan Endemic Species 
Research Institute

Liocichla steerii Captivea

KU15203 University of Kansas Biodiver‑
sity Institute

Leiothrix argentauris Myanmar Jed Lwe 26.181 98.334

KU6724 University of Kansas Biodiver‑
sity Institute

Leiothrix lutea China Hunan, Dongan, Dongan Shun 
Huang Shan National Park

26.409 111.035

KU11346 University of Kansas Biodiver‑
sity Institute

Minla ignotincta China Guizhou, Daozhen, Dashahe 
Nature Preserve

29.167 107.575

http://www.geneious.com
http://www.geneious.com
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Table 2  Oligonucleotide sequences (5′–3′) used as PCR primers in this study

Oligonucleo-
tide name

5′-CS tag + target sequence (5′ → 3′) Locus description Location References

CS1-12630F ACACTGACGACATGGTTCTACACAGCAGATCCTCAACGTCTC Magmas-like protein Autosomal ch: 14 [34]

CS2-12630R TACGGTAGCAGAGACTTGGTCTCTGCAGGTAGAAGGAGCCTC Magmas-like protein Autosomal ch: 14 [34]

CS1-Liocichla_
CS12630_F1

ACACTGACGACATGGTTCTACACAAGTGGTCGTAGTTCTGCC Magmas-like protein Autosomal ch: 14 This study

CS2-Liocichla_
CS12630_R1

TACGGTAGCAGAGACTTGGTCTGAGATCCAGAAGGTAGAGGC Magmas-like protein Autosomal ch: 14 This study

CS1-14572F ACACTGACGACATGGTTCTACACAGTAAAGAAACAGAAGTCC Phosphotyrosyl phosphatase Autosomal ch: 1 [34]

CS1-14572R TACGGTAGCAGAGACTTGGTCTACTGCTGTGTGTTAGACTG Phosphotyrosyl phosphatase Autosomal ch: 1 [34]

CS1-Liocichla_
CS14572_F1

ACACTGACGACATGGTTCTACAGTCCTCGAGACTCACATTCA Phosphotyrosyl phosphatase Autosomal ch: 1 This study

CS2-Liocichla_
CS14572_R1

TACGGTAGCAGAGACTTGGTCTGCCATTCCTTCATAAGCTGC Phosphotyrosyl phosphatase Autosomal ch: 1 This study

CS1-23361F ACACTGACGACATGGTTCTACAAAAGCTTATCAGGAGACCTC Myeloid leukemia factor 2 Autosomal ch: 1 [34]

CS2-23361R TACGGTAGCAGAGACTTGGTCTTTGATGTAGTCCTGCCTCTC Myeloid leukemia factor 2 Autosomal ch: 1 [34]

CS1-Liocichla_
CS23361_F1

ACACTGACGACATGGTTCTACAAGCCGCTGTCCGAGTCCCTT Myeloid leukemia factor 2 Autosomal ch: 1 This study

CS2-Liocichla_
CS23361_R1

TACGGTAGCAGAGACTTGGTCTCCCGCAGCACTTTGGCTTTGC Myeloid leukemia factor 2 Autosomal ch: 1 This study

CS1-TGFB2F5 ACACTGACGACATGGTTCTACAGAAGCGTGCTCTAGATGCTG Transforming growth factor β2 Autosomal ch: 3 [35]

CS2-TGFB2R6 TACGGTAGCAGAGACTTGGTCTAGGCAGCAATTATCCTGCAC Transforming growth factor β2 Autosomal ch: 3 [35]

CS1-Liocichla_
TGF_F1

ACACTGACGACATGGTTCTACATGCACACCCTCATTGTCAGACCCA Transforming growth factor β2 Autosomal ch: 3 This study

CS2-Liocichla_
TGF_R1

TACGGTAGCAGAGACTTGGTCTACAGGCAGGCAAGTCTGAGTCAC Transforming growth factor β2 Autosomal ch: 3 This study

CS1-FIB5F ACACTGACGACATGGTTCTACACGCCATACAGAGTATACTGTGACAT β-fibrinogen intron 5 Autosomal ch: 4 [36]

CS2-FIB5R TACGGTAGCAGAGACTTGGTCTGCCATCCTGGCGATTCTGAA β-fibrinogen intron 5 Autosomal ch: 4 [36]

CS1-L5216 ACACTGACGACATGGTTCTACAGGCCCATACCCCGRAAATG Mitochondrially encoded 
NADH dehydrogenase 2

Mitochondrial [38]

CS2-H6313 TACGGTAGCAGAGACTTGGTCTACTCCTRTTTAAGGCTTTGAAGGC Mitochondrially encoded 
NADH dehydrogenase 2

Mitochondrial [38]

CS1-L10755 ACACTGACGACATGGTTCTACAGACTTCCAATCTTTAAAATCTGG Mitochondrially encoded 
NADH dehydrogenase 3

Mitochondrial [39]

CS2-H11151 TACGGTAGCAGAGACTTGGTCTGATTTGTTGAGCCGAAATCAAC Mitochondrially encoded 
NADH dehydrogenase 3

Mitochondrial [39]

CS1-L14851 ACACTGACGACATGGTTCTACACCTACTTAGGATCATTCGCCCT Mitochondrially encoded 
cytochrome b

Mitochondrial [40]

CS2-Hb745 TACGGTAGCAGAGACTTGGTCTTTTCTGGGTCTCCTAGTAGGTT Mitochondrially encoded 
cytochrome b

Mitochondrial [41]

CS1-Liocichla_
cytb_F1

ACACTGACGACATGGTTCTACACATATGCCGAAACGTCCA Mitochondrially encoded 
cytochrome b

Mitochondrial This study

CS1-Liocichla_
cytb_F2

ACACTGACGACATGGTTCTACACTTTCACATCGGCCGAGG Mitochondrially encoded 
cytochrome b

Mitochondrial This study

CS2-Liocichla_
cytb_R1

TACGGTAGCAGAGACTTGGTCTCCTCAGAATGATATTTG Mitochondrially encoded 
cytochrome b

Mitochondrial This study

CS2-Liocichla_
cytb_R2

TACGGTAGCAGAGACTTGGTCTGTCATTCTACTAGGG Mitochondrially encoded 
cytochrome b

Mitochondrial This study

CS2-Liocichla_
cytb_R3

TACGGTAGCAGAGACTTGGTCTTAGTGGGTTGTTTGATCC Mitochondrially encoded 
cytochrome b

Mitochondrial This study

CS2-Liocichla_
cytb_R4

TACGGTAGCAGAGACTTGGTCTGGTGTAGTAGGGGTGGAA Mitochondrially encoded 
cytochrome b

Mitochondrial This study

All oligonucleotides were synthesized by Integrated DNA Technologies (IDT) at the 25 nmole scale and purified by a standard desalting protocol. All oligonucleotides 
were tagged at the 5′ end with common sequence tags, either CS1 (5′-ACACTGACGACATGGTTCTACA) in the forward direction or CS2 (5′-TACGGTAGCAGAGACTTGGTCT) 
in the reverse direction. Locations for each locus are based on homology with the chicken (Gallus gallus) genome determined from an NCBI ‘gene’ search of the locus 
description in the case of transforming growth factor β2 and β-fibrinogen intron 5. For the remainder of the nuclear autosomal loci location was determined from the 
literature [34]. Internal oligonucleotides designed specifically to match conserved sequences for our samples (Liocichla and outgroups) are prefaced with ‘Liocichla’ in the 
oligonucleotide name.
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of nucleotide substitution for each locus using Akaike 
information criteria (AIC) in the program jModeltest2 
v2.1.7 [48]. We used PhyML v3.0 [49, 50] implemented 
in Geneious v8.1.4 [42] to generate maximum likelihood 
gene trees and tested the molecular clock hypothesis for 
each locus using a likelihood ratio test in PAUP* v4.0b10 
[51]. Maximum likelihood gene tree analyses were per-
formed using a concatenated dataset of all three mtDNA 
genes as well as for each nuclear locus. Bootstrap support 
was determined with 1,000 replicates.

We combined all sequence information into a  locus 
partitioned *BEAST mutlilocus species tree analysis 
implemented in the BEAST v2.3.0 software platform 
[52, 53]. *BEAST uses a Bayesian Markov chain Monte 
Carlo (MCMC) method to jointly estimate multiple gene 
trees embedded within a shared species tree. Individual 
sequences were grouped by taxon and each taxon was 
used as a separate operational taxonomic unit (OTU) 
in all species tree analyses; L. bugunorum and Minla 
ignotincta were excluded because each lacked sequence 
data for at least one locus. Because of their uniparental 
inheritance and lack of recombination, mitochondrial 
genes were constrained to the same tree model but given 
gene-specific substitution and clock models. Substitu-
tion models were determined for each locus using the 
bModelTest package [54] implemented in BEAST v2.3.0. 
The molecular clock hypothesis was rejected for all three 
mtDNA genes as well as Fib5, so these loci were assigned 
uncorrelated lognormal relaxed clock models [55]; strict 
clock models were used for all other loci. For species tree 
priors, we used a Yule tree prior and a piecewise linear 
and constant root population size model.

Divergence dates were estimated using a molecular 
clock approach. Lineage substitution rates were esti-
mated for all loci in BEAST v2.3.0 based on lognormal 
prior distributions. The mitochondrial cytochrome b 
substitution rate was estimated based on a lognormal 
prior distribution with a mean and initial value of 0.0105 
substitutions/site/lineage/Ma [56] and a standard devia-
tion of 0.15 (95% interquartile range of 0.008–0.0139). 
This distribution is overlapping with other estimates for 
cytochrome b substitution rates in birds [56–58]. All 
other loci were estimated based on more broadly distrib-
uted lognormal prior distributions for substitution rate. 
ND2 and ND3 substitution rates were estimated based 
on a lognormal distribution with a mean of 0.0105 substi-
tutions/site/lineage/Ma and a standard deviation of 0.75 
(95% interquartile range of 0.002–0.0345). All nuclear 
loci substitution rates were estimated based on a lognor-
mal prior distribution with a mean of one-tenth of the 
mean substitution rate of the mitochondrial loci (0.00105 
substitutions/site/lineage/Ma) and a standard deviation 
of 0.75 (95% interquartile range of 0.0002–0.0035).

MCMCs were run for 100 million generations (sam-
pling every 10,000 generations and discarding the first 
10% as burn-in). Four independent MCMCs were run 
under these conditions and log files and species tree files 
from each run were combined into a single log file and 
a single species tree file using the logCombiner software 
included with BEAST v2.3.0. Convergence was assessed 
in the program Tracer v1.6.0 [59].

We also conducted two additional analyses using 
*BEAST in BEAST v2.3.0. First, we assessed the influence 
of codon partitioning on both species tree topology and 
species tree height by partitioning each of the three mito-
chondrial coding genes by all three codon positions and 
running the same analysis in four replicate runs. Third 
position  codon partitions were given lognormal prior 
distributions for lineage substitution rate with the third 
position for cytochrome b with a mean and initial value 
of 0.0105 substitutions/site/lineage/Ma and a standard 
deviation of 0.15 and ND2 and ND3 third position sites 
with a mean value of 0.0105 substitutions/site/lineage/
Ma and standard deviation of 0.75. First and second 
codon positions were given lognormal prior distributions 
with a mean of one-tenth the third position substitution 
rate and a standard deviation of 0.75. All other param-
eters were the same as those analyses with partitioning 
only by locus. We evaluated models that used both parti-
tioning by locus and codon against those with data parti-
tioned only by locus in relation to species tree height by 
comparing marginal likelihoods using the Akaike’s infor-
mation criterion (AIC) from the model comparison pro-
gram in Tracer v1.6.0 [59, 60]. Additionally, to confirm 
that mtDNA data were not driving the inferred species 
tree topology, we conducted a separate *BEAST analysis 
in BEAST v2.3.0 under identical conditions, save for the 
exclusion of the three mtDNA genes. All relevant xml 
input files and output files are available on Dryad (http://
dx.doi.org/10.5061/dryad.413f4).

Results
We obtained a total of 1,733 bp of mtDNA sequence data 
and 1,921  bp of nuclear intron sequence data across 11 
ingroup samples representing all five Liocichla species 
(L. omeiensis, L. bugunorum, L. steerii, L. phoenicea and 
L. ripponi) and three outgroup samples from three out-
group species (Leiothrix argentaurus, Leiothrix lutea 
and Minla ignotincta, Table  3). Data from all loci were 
obtained from at least one individual sample across all 
taxa except L. bugunorum, for which we were only able 
to obtain sequences from the cytochrome b (KJ456321.1) 
and ND2 (KJ455478.1) genes [33], and M. ignotincta for 
which we were missing data for one nuclear intron loci 
requiring us to exclude this taxon from the *BEAST spe-
cies tree analysis. The 14572 intron had a 4-bp insertion/

http://dx.doi.org/10.5061/dryad.413f4
http://dx.doi.org/10.5061/dryad.413f4
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deletion (indel) within the ingroup that was identified by 
eye and removed prior to analyses. Four additional indels 
were identified in the outgroup taxa and also removed 
prior to analyses. 42 base pairs of tRNA sequence were 
excluded from ND3 for the *BEAST analysis to facili-
tate codon partitioning. No locus exhibited evidence of 
recombination.

Maximum likelihood analysis for mtDNA sequences 
and MCMC Bayesian phylogenetic analyses in *BEAST 
for both a combined nuDNA and mtDNA dataset and a 
nuDNA only dataset recovered the same strongly sup-
ported topology, thereby providing robust support for a 
single phylogenetic hypothesis for the genus Liocichla. 
Individual gene trees derived from analysis of the nuclear 
introns showed low resolution (Fig.  2). Comparatively 
poor resolution in nuDNA gene trees is expected given 
the larger effective population sizes of nuclear genes 
versus mitochondrial genes [61]. Maximum-likelihood 
analysis of the concatenated mtDNA dataset resulted in 
a well-resolved topology that placed L. steerii as the sister 
taxon to all remaining extant Liocichla. L. omeiensis was 
recovered as sister to L. bugunorum and L. phoenicea was 
recovered as sister to L. ripponi (Fig. 3).

The *BEAST species tree analysis resulted in a strongly 
supported topology consistent with the mtDNA maxi-
mum likelihood gene tree topology (Fig.  3) with pos-
terior branch support of 0.98–1.0 (Fig.  4). The same 
topology was produced with only moderately lower 
posterior branch support (0.85–1.0) when mtDNA data 
were excluded from the analysis (Fig. 5). A *BEAST spe-
cies tree analysis in BEAST v2.3.0 with data partitioned 
by both locus and codon position resulted in the same 
topology with similar levels of posterior branch support 
(0.99–1.0) but with comparatively older divergence times 
relative to both an analysis of our data with partitioning 
only by locus and divergence estimates of Liocichla from 
prior studies [11]. However, a model that is partitioned 

by both locus and codon was shown to be a significantly 
worse fit with regards to species tree height (age) than a 
model with partitioning by locus alone. 

Divergence time estimation based on a *BEAST analy-
sis incorporating partitioning by locus only indicated that 
L. steerii began its divergence from the rest of the extant 
Liocichla approximately 8.94  Ma [5.55–12.87  Ma high-
est posterior density (HPD)]. The next split between the 
L. omeiensis and L. phoenicea/L. ripponi clade occurred 
approximately 6.06  Ma (3.06–9.18  Ma HPD). The split 
between L. phoenicea and L. ripponi occurred approxi-
mately 0.88 Ma (0.07–1.88 Ma HPD).

Estimated samples sizes (ESS) from the combined 
*BEAST locus partitioned runs for all posterior mean 
lineage substitution rates for relaxed lognormal clock 
models and posterior lineage substitution rates for strict 
clock models were over 10,000 for all loci except for ND2 
(ESSucldmean  =  4695). ESS values from the combined 
*BEAST runs for the species coalescent, species tree 
height and Yule species tree model were all >6,000 with 
consistent traces for each.

Discussion
Phylogenetic relationships
Prior work supports the existence of a monophyletic 
Liocichla closely allied with the genera Actinodura, Het-
erophasia, Leiothrix, Minla but none of these prior 
studies had sufficient taxon sampling to investigate the 
relationships within Liocichla [6, 10, 11]. The origin of 
the Liocichla separates an island endemic (L. steerii) 
from a continental lineage containing all other taxa 
(Figs.  3, 4, 5). L. bugunorom, L. omeiensis and L. steerii 
share several plumage characters and Collar and Robson 
[1] have hypothesized that these taxa form a “superspe-
cies”, however, geography in this case seems to be a better 
indicator of evolutionary history than morphology. The 
plumage similarity between L. bugunorum and L. steerii 

Table 3  Descriptive statistics for the eight molecular loci used to construct phylogenetic relationships within the genus 
Liocichla

The summary includes the assumed inheritance, the number of sequences analyzed, the length of the sequences (in base pairs), the number of alleles, the number of 
segregating sites (s), the number of parsimony-informative sites (PI sites), nucleotide diversity (π), and the estimated best-fit nucleotide substitution model. Statistics 
are drawn from ingroup sequences only, whereas best-fit nucleotide substitution models were estimated with outgroups.

Locus Inheritance # Sequences Length (bp) Alleles s PI sites π (×10−3) Model

cytb Mitochondrial 11 400 10 68 51 72.95 TPM2uf + I

ND2 Mitochondrial 11 949 11 204 133 84.99 TrN + G

ND3 Mitochondrial 10 384 5 64 42 69.97 TPM3uf + G

FIB5 Autosomal 20 511 6 11 8 7.82 TIM3 + G

TGFB2 Autosomal 20 359 9 22 14 17.83 TrNef + I

12630 Autosomal 16 203 10 13 8 19.95 TPM2uf

14572 Autosomal 20 451 10 14 5 6.44 HKY + G

23361 Autosomal 16 397 5 11 6 8.35 HKY + I
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is particularly striking, and several features, including the 
yellow lores, yellow-tipped undertail coverts, and over-
all green coloration, are uniquely shared by these two 
Liocichla species [1, 25, 62]. Our phylogenetic analysis, 

however, rejects a close relationship between L. steerii 
and either L. bugunorom or L. omeiensis and suggests the 
observed plumage similarities are homoplasious, possibly 
as a result of retained ancestral characters. Similar results 
have been described among other Asian birds [63–65] 
and discordance between morphology and molecular 
based phylogenies is widespread within the Sylvioidea 
[4]. These studies highlight the labile nature of avian 
plumage characters in general [66–68].

Biogeography
The climatic and geologic history of Asia has given rise 
to a complex and dynamic landscape with a myriad of 
potential isolating barriers and ecological shifts that 
wax and wane over time. The collision of the Indian 
subcontinent with Asia and the resulting rise of the 
Himalayas, episodic climate change creating shifting 
precipitation patterns and periodic land bridge connec-
tions resulting from rising and falling sea levels [69–72] 
have all contributed to the biogeographical patterns 
found among Asian species [12, 31, 33, 73–78]. These 
events also likely played critical roles in the diversifica-
tion of Liocichla in Asia.

The island of Taiwan in particular provides an impor-
tant testing ground for hypotheses on the assemblage of 

Fig. 2  nuDNA maximum likelihood gene trees. Nuclear intron maximum likelihood gene trees generated with PhyML v3.0 for nuDNA sequence 
data for 12630 (a), 14572 (b), 23361 (c), Fib5 (d) and TGFB2 (e). Each sequence includes the taxon, voucher institution and number and is followed 
by a or b to denote the phased alleles derived from a single diploid sequence. Branch support with bootstrap values greater than 90 are shown.

Fig. 3  mtDNA maximum likelihood gene tree. Maximum likelihood 
mitochondrial gene tree based on concatenated sequence data from 
cytochrome b, ND2 and ND3 (outgroup taxa not shown).
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Fig. 4  Combined mitochondrial and nuclear DNA species tree. Species tree analysis using the program *BEAST in BEAST v2.3.0 and combined 
mtDNA and nuDNA sequence data partitioned by locus. Branches labeled with posterior branch support values.

Fig. 5  Nuclear DNA species tree. Species tree analysis using the program *BEAST in BEAST v2.3.0 using only nuDNA sequence data partitioned by 
locus. Branches labeled with posterior branch support values.
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biotas on continental islands. The phylogenetic position 
of L. steerii hints at a comparatively early divergence on 
the island of Taiwan. Alternatively, the early divergence 
of L. steerii may be illusory due to our inability to include 
data from one or more extinct sister lineages. Evidence 
for a sister relationship between a Taiwan endemic and 
an Indochinese endemic in Vietnam has been found for 
the Green-backed Tit (Parus monticolus). Wang et  al. 
[79] postulated that these taxa represent the relic popu-
lations of a wider radiation that connected populations 
on Taiwan with those in Mainland Asia. This hypothesis 
would predict that for those Taiwan endemics for which 
there are extant lineages in the region from Southeast 
China to Northern Indochina that these lineages should 
be more closely related to Taiwan endemics than to other 
continental lineages. This is indeed the case for other 
widespread babbler radiations in Asia with an endemic 
taxon on the island of Taiwan. In Alcippe morrisonia the 
endemic taxon on Taiwan is sister to a clade containing 
taxa from Hainan and Fujian [80, 81] and in the wide-
spread Pomatorhinus ruficollis complex the endemic P. 
musicus on Taiwan forms the sister lineage to a lineage 
consisting of P. nigrostellatus in South China, Hainan and 
Northern Indochina and P. stridulus in Eastern China 
[63, 65].

Molecular clock-based estimates of divergence times, 
while admittedly fraught with assumptions [57, 82–84], 
provide useful benchmarks in broad comparisons both 
among species and with the dating of key geological and 
climatic events. The divergence of L. steerii of 8.94  Ma 
(5.55–12.87  Ma HPD) may precede the Pliocene/Mio-
cene boundary and is either earlier or overlapping with 
only the oldest estimates of the timing of Taiwan’s uplift 
approximately 6 Ma [85–87]. The divergence of L. steerii 
is also either older or overlapping only with the older end 
of the distribution for divergences estimated for other 
montane forest taxa in Taiwan including birds (3.51 Ma, 
Alcippe morrisonia, [80]; 3.25  Ma, Regulus goodfellowi, 
[88]; 1.7  Ma, Carpodacus formosanus, [89]; 2.6  Ma, 
Carpodacus formosanus, [90]; 0.18 Ma, Parus monticolus, 
[79]; 3.1 Ma, Sittiparus varius, [91]), trees (3.23–3.41 Ma, 
Taiwania cryptomerioides, [92]), amphibians (2.22  Ma, 
Sylvirana latouchii, [93]; 1.25 Ma, Limnonectes fujianen-
sis, [94]) and insects (0.3 Ma, Euphaea formosa, [95]). L. 
steerii’s comparatively early appearance on Taiwan may 
in part coincide with the early appearance of subtropical 
forests suitable for subtropical Oriental forest flora and 
fauna. Some of the later diverging endemic taxa on Tai-
wan are higher elevation species with a Palearctic origin 
whose settlement on Taiwan was likely postponed until 
the island had undergone sufficient uplift to foster more 
temperate biomes.

These data suggest that L. steerii may either be among 
the oldest endemic avian species in Taiwan, potentially 
isolated by ecological barriers that predate some cur-
rently recognized estimates for the uplift of the island, or 
like P. musicus [63, 65] and A. morrisonia [80, 81], may 
have diverged later from ancestral populations in East-
ern and Southern China who in the case of L. steerii have 
gone extinct. The comparatively patchy distribution of L. 
ripponi in Southern and Eastern China suggests that the 
environment in this region may have been less than ideal 
for Liocichla.

The extant continental Liocichla consist of four distinct 
evolutionary lineages (L. phoenicea, L. ripponi, L. bugu-
norum, L. omeiensis). The present study supports a L. 
phoenicea/L. ripponi lineage sister to a L. bugunorum/L. 
omeiensis lineage (Figs. 3, 4). We were not able to incor-
porate sequences from L. bugunorum into a multilocus 
species tree, however, mitochondrial DNA supports a 
sister relationship between L. bugunorum and L. omeien-
sis with the Hengduan Mountains as a potential isolat-
ing barrier between these two species. Diversification of 
Liocichla species in mainland Asia follows many of the 
patterns observed in other avian taxa in Asia. Southcen-
tral China and Southeast Asia are in particular pivotal 
centers of origin for biodiversity of Asia, particularly for 
passerine birds [31, 32, 74], and these regions encompass 
the probable ancestral Miocene distribution for the Lioc-
ichla [10, 11, 31]. Only L. bugunorum and L. phoenicea 
exhibit Himalayan distributions and each has a sister 
taxon with a different non-Himalayan distribution (Cen-
tral China and South China/Northern Indochina respec-
tively). These data suggest that the Himalayan Liocichla 
may have independently originated from dispersal fol-
lowed by vicariance between dispersed Himalayan popu-
lations and ancestral populations in Central China and 
Southeast Asia. Dispersal into the Himalayas followed 
by vicariant divergence has also been supported by phy-
logenetic and biogeographic analyses for other passerine 
birds in the region [31, 74].

Geological and climatic change likely created new 
opportunities for range expansion, niche filling and subse-
quent diversification of the Liocichla into emerging mon-
tane forest environments the Eastern Himalaya, Central 
China and East Asia [31, 33, 96, 97]. The L. phoenicea/L. 
ripponi lineage identified in the present study provides 
fodder for future work. Together with diagnostic plum-
age differences [23], our results support species status for 
these taxa, recognized by previous authors as subspecies 
[29]. A Pleistocene divergence time for L. phoenicea and 
L. ripponi roughly coincides with those for some mon-
tane forest birds in the region [80] but is later than others 
[74]. The Mekong-Salween Divide has been proposed as 
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a biogeographic barrier for the region [98, 99]. The divide 
between the parapatric distributions of L. phoenicea and 
L. ripponi appears to be west of the traditional Mekong-
Salween Divide approximately at the Myitnge River and 
Myanmar’s Eastern highlands [1] but additional data on 
the distribution of these taxa are needed. Also, the frag-
mented range of both L. phoenicea and L. ripponi across 
South and Southeast Asia may be indicative of further 
phylogeographic structure in these lineages that may be 
uncovered with additional sampling.

Conclusions
This study when taken in the context of other phyloge-
netic and biogeographic work in the region poses a plau-
sible hypothesis for the evolution of Liocichla in Asia. The 
Liocichla radiation likely was initiated sometime between 
the mid-Miocene to the Miocene–Pliocene boundary. 
Changing climate during this period likely opened new 
ecological niches to Southeast Asian immigrants result-
ing in speciation events across a broad region from East 
Asia to South and Central China to the Eastern Himala-
yas [72, 74, 76, 78, 97].

An eastern expansion of Liocichla ended at the island 
of Taiwan where L. steerii ultimately became isolated, but 
this expansion left no extant lineages of Liocichla in East-
ern and Southeastern China. Alcippe morrisonia also has 
an endemic taxon on the island of Taiwan but unlike L. 
steerii, A. morrisonia on Taiwan has extant sister lineages 
in Eastern and Southeastern China. However, the extant 
populations of A. morrisonia in Eastern and Southeast-
ern China likely underwent significant demographic 
fluctuations compared to those in Central and Western 
China [80]. Periodic climatic change occurring from the 
Miocene–Pliocene boundary to the Pleistocene may have 
had comparatively greater effects on the ecosystems of 
Eastern and Southeastern China causing population bot-
tlenecks in some taxa (A. morrisonia) [80] and extinction 
in others (Liocichla).

The history on the western side of the Liocichla radia-
tion is more complex and likely involved two independent 
instances of range expansion into the Eastern Himalayas 
followed by speciation. This pattern is consistent with the 
conclusions drawn from studies of other Asian birds with 
taxa in the Eastern Himalayas [31, 74]. The most recent 
split in the Liocichla appears to have occurred during 
the Pleistocene between the parapatrically distributed 
L. phoenicea and L. ripponi although it is unclear as to 
whether or not this represents an example of parapatric 
speciation or secondary contact.

Future studies involving ecological niche modeling 
for the genus, reconstruction of ancestral distributions 
and more broadly sampled molecular-based studies 
of phylogeography and historical demography for the 

more widespread but fragmented L. phoenicea and 
L. ripponi would be valuable contributions in further 
testing of the hypotheses generated from this study. 
These studies however would all require additional 
sampling and field data especially for those taxa with 
lingering questions about range limits.
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