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Abstract 

Background:  Accurate nestling age is valuable for studies on nesting strategies, productivity, and impacts on repro-
ductive success. Most aging guides consist of descriptions and photographs that are time consuming to read and 
subjective to interpret. The Western Bluebird (Sialia mexicana) is a secondary cavity-nesting passerine that nests in 
coniferous and open deciduous forests. Nest box programs for cavity-nesting species have provided suitable nesting 
locations and opportunities for data collection on nestling growth and development.

Methods:  We developed models for predicting the age of Western Bluebird nestlings from morphometric meas-
urements using model training and validation. These were developed for mass, tarsus, and two different culmen 
measurements.

Results:  Our models were accurate to within less than a day, and each model worked best for a specific age range. 
The mass and tarsus models can be used to estimate the ages of Western Bluebird nestlings 0–10 days old and were 
accurate to within 0.5 days for mass and 0.7 days for tarsus. The culmen models can be used to estimate ages of nest-
lings 0–15 days old and were also accurate to within less than a day. The daily mean, minimum, and maximum values 
of each morphometric measurement are provided and can be used in the field for accurate nestling age estimations 
in real time.

Conclusions:  The model training and validation procedures used here demonstrate that this method can create 
aging models that are highly accurate. The methods can be applied to any passerine species provided sufficient nest-
ling morphometric data are available.

Keywords:  Cavity-nesting, Nest boxes, Nestling development, Predictive models, Western Bluebird

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​
mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​cdoma​in/​
zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
The nestling period is a sensitive time within the life 
cycle of altricial birds that strongly influences their sur-
vival and reproductive success (Langham 1972; Bryant 
1978; Amiot et al. 2014). Quantitative measures of nest-
ling growth and development are important for study-
ing avian breeding biology and reproductive strategies 
(Amiot et al. 2014). Accurately aging nestlings at younger 

ages is challenging, but important for data quality 
throughout the nestling period. Often, nest box studies 
require collecting data on nestlings multiple times dur-
ing the nestling period. If the initial age estimate is not 
accurate, there will be data quality issues throughout the 
study. Because young nestlings do not yet display some 
obvious physical characteristics (e.g., feather tract devel-
opment), photographic guides and models based on mor-
phometric measurements aid in accurately estimating 
age (Bortolotti 1984a; Wails et al. 2014; Costa et al. 2020).

The ability to accurately age nestlings is an important 
aspect of avian ecology that yields insight into the effects 
of different nesting strategies on nest success (O’Connor 
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1978; Shaffer 2004) and helps identify impacts of envi-
ronmental variables on fitness, feeding habits, growth, 
and reproductive success (Jongsomjit et al. 2007). Studies 
that quantify nest success often use models (e.g., Dins-
more et al. 2002; Shaffer 2004) that directly input nest age 
(determined by the nestlings within that nest) as a covari-
ate to  predict nest success, and thus accurate nestling 
age would also be critical for any study employing these 
models. Overall trends in population demographics and 
determining different stages of nestling development that 
are most impacted by adverse environmental conditions 
can benefit from accurately aged nestlings (Partridge 
and Harvey 1988; Brawn 1991). Without an accurate 
way to estimate age, productivity can easily be overesti-
mated or underestimated depending on the methodol-
ogy used (Wails et al. 2014). In addition, it is important 
for determining when nestlings can be banded (Murphy 
1981; Costa et  al. 2020). Missing these opportunities 
could result in incomplete and poor-quality data if birds 
fledge before they can be banded. Other examples of sin-
gle opportunity sampling (i.e., only one chance to obtain 
data) are studies that rely on taking blood samples or sex-
ing birds at certain ages.

The most accurate method of aging nestlings would 
result from daily nest checks until eggs hatch, which 
provides researchers with a specific hatch date. How-
ever, this is not always feasible; checking a nest daily is 
time consuming, expensive, causes stress on the birds, 
and can lead to increased predation (Wails et  al. 2014). 
Some researchers have used feather tract development 
and physical characteristics in photographic guides for 
age determination for a variety of species (Murphy 1981; 
Podlesak and Blem 2002; Jongsomjit et  al. 2007; Fernaz 
et  al. 2012; Brown et  al. 2013; Amiot et  al. 2014; Wails 
et al. 2014; Costa et al. 2020). However, the use of pho-
tographs alone can be highly subjective due to quality, 
perspective, and image scale (Bechard et al. 1985; Brown 
et  al. 2013). There are also guides that contain written 
physical descriptions of nestlings for each day (Pinkowski 
1975; Amiot et  al. 2014). Costa et  al. (2020) developed 
a photographic guide for aging European Bee-eaters 
(Merops apiaster) that is accurate to within 3 days. This 
guide also contains written descriptions on eye develop-
ment, bill size and color, feather color and stages of devel-
opment, motor coordination, and overall size for 3-day 
intervals throughout the nesting period. For research-
ers that manage large nest box networks and have crew 
members with varying levels of experience, reading a 
written description for each nestling is time consuming 
and interpretation is subjective.

Morphometric data have been used to estimate nest-
ling age of various species [see Wails et al. (2014) for a list 
of published studies]. Predicting age from morphometric 

measurements using linear regression, where the mor-
phometric measurement is the independent variable, 
has been used so that researchers can age nestlings in 
the field (Bortolotti 1984b;  Gilliland and Ankney 1992; 
Palacios and Anderson 2018). This method of nestling 
age estimation has been used in Bald Eagles (Haliaeetus 
leucocephalus) (Bortolotti 1984b) and  California Brown 
Pelicans (Pelecanus occidentalis californicus)  (Palacios 
and Anderson 2018). Validation to determine the accu-
racy of a given aging method is a critical step, so that 
researchers know the uncertainty around their estima-
tion (Wails et al. 2014; Costa et al. 2020). Failing to know 
the accuracy of estimations could result in poor-quality 
data. One way to validate age estimates is to use predic-
tive modeling and validation procedures. This is done by 
applying the model to a subset of known test data, which 
are withheld from the model-building dataset, to quan-
tify (e.g., using root mean squared error) how close the 
model-predicted values match the known test data.

Another method of decreasing uncertainty in age esti-
mates is to use multiple morphometric measurements. 
Brown et al. (2011) compared the accuracy between inex-
perienced and experienced researchers for two meth-
ods of age determination: feather tract development 
and morphometric data. They found age estimates were 
most accurate for both inexperienced and experienced 
researchers when more than one morphometric meas-
urement was used. Additionally, using a combination of 
morphometric measurements and physical character-
istics is recommended if time allows and birds are not 
stressed (Murphy 1981; Haggerty 1994; Podlesak and 
Blem 2002; Jongsomjit et al. 2007).

The Western Bluebird (Sialia mexicana) is a small 
territorial passerine that is widely distributed in west-
ern North America from southern British Columbia to 
southern Mexico (Dickinson and Leonard 1996; Keyser 
et  al. 2004). They are a secondary cavity-nesting song-
bird that inhabits coniferous and open deciduous forests. 
Ponderosa pine (Pinus ponderosa) forests provide nest 
cavities and low perches for insect hunting and constitute 
one of the Western Bluebird’s typical habitats (Kozma 
and Kroll 2010). Western Bluebirds also live and nest in 
pinyon-juniper woodlands comprised of pinyon pine 
(Pinus edulis) and juniper (Juniperus sp.) trees.

Bluebirds also use nest boxes for breeding when there 
is cavity competition (Brawn and Balda 1988; Brawn 
1991) or when there is loss of breeding habitat (Keyser 
et al. 2004). Nest box programs not only provide suitable 
nesting locations, but they also provide a mechanism for 
data collection and a way to monitor and evaluate envi-
ronmental and anthropogenic impacts to populations 
over long time periods (Musgrave et  al. 2019; Wysner 
et al. 2019).
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Despite various nest box studies on Western Blue-
birds (Brawn 1991; Wang and Weathers 2009; Fair et al. 
2010), no nestling aging guides exist. There is an image-
based guide for aging Eastern Bluebird (S. sialis) nestlings 
(Pinkowski 1975), a non-peer reviewed guide describing 
general development of all bluebird species among differ-
ent age ranges (Graham 2006), and an assessment testing 
the accuracy of three photographic guides for aging East-
ern Bluebird nestlings (Wilkins and Brown 2015).

Here, we developed methods to age Western Blue-
bird nestlings using data collected from nest boxes over 
three breeding seasons in northern New Mexico. Our 
specific objectives were to create linear regression mod-
els built from morphometric data and present measure-
ment ranges for tarsus, mass, and two different culmen 
measurements for each nestling age (0–21 days) to accu-
rately age nestlings. Our regression approach included 
using multiple morphometric measurements to develop 
a series of validated predictive models that can be used to 
calculate age from measurements taken in the field. We 
provide information on how to use our data for research-
ers working with Western Bluebirds and how these meth-
ods can be applied to other passerine species using R 
code that is shared on a public data repository.

Methods
Study site
Our field work was conducted using an existing nest box 
network at sites on and around Los Alamos National 
Laboratory in Los Alamos County, New Mexico. Los Ala-
mos County is located on the eastern flanks of the Jemez 
Mountains in north-central New Mexico, approximately 
2200  m in elevation, on the Pajarito Plateau. The land-
scape consists of narrow mesas separated by steep-sided 
canyons. The dominant habitat type is dependent on ele-
vation but there are four major habitat types in Los Ala-
mos County: mixed conifer forest, ponderosa pine forest, 
pinyon-juniper woodland, and juniper grasslands (Fair 
and Myers 2002).

Field work
Nest boxes were placed on trees in locations dominated 
by ponderosa pine. A total of 14 nests over three breed-
ing seasons (2015–2017) were monitored in this study. 
The number of nestlings studied varied each year with 
10 in 2015, 26 in 2016, and 27 in 2017. We checked nest 
boxes every 2 weeks beginning in April until a clutch of 
eggs was discovered. Following egg discovery, we moni-
tored those nest boxes daily to ensure the hatch day was 
recorded. Western Bluebirds generally lay one egg per 
day, averaging five eggs per clutch (Brawn 1991) and do 
not begin incubation until all eggs are laid (Guinan et al. 
2020). They can display asynchronous hatching when 

looking at a much finer timescale (Ferree et  al. 2010); 
however, in our study we did not have the ability to moni-
tor the nest boxes hourly to determine the exact hatch 
order and we assumed all eggs hatched within a 24  h 
period.

Beginning with the hatch day (day 0) through fledg-
ing, we collected morphometric data daily for each nest-
ling between 10:00 and 12:00 to ensure that a constant 
interval of development was recorded for each day. Two 
researchers were present for all measurements over all 
3 years to limit observer bias. We weighed each nestling 
using a digital scale to the nearest tenth of a gram. Tar-
sus length and culmen length were also measured daily. 
We used digital calipers to measure the length of the tar-
sus and culmen to the nearest hundredth of a millimeter. 
Tarsus was measured from the tibiotarsal joint to the dis-
tal end of the last leg scale (Jongsomjit et al. 2007).

We used two different methods for measuring culmen. 
In 2015, we measured the total culmen length, which 
is a measurement from the tip of the bill to the edge of 
the skull (Baldwin et al. 1931; Winker 1998). In 2016 and 
2017, we measured the culmen from the tip of the bill to 
the distal side of the nares (Baldwin et  al. 1931; Borras 
et al. 2000). The different culmen measurements were a 
result of two different field crews interpreting methods 
differently.

Statistical analysis
All statistical analyses were performed using R version 
3.5.1 (R Core Team 2018). For all three morphometric 
growth measurements (mass, tarsus, and culmen), we 
developed models for age prediction using linear mixed 
models (LMM), model training, and model validation. 
We used the ‘lme4’ package (Bates et  al. 2015) for the 
LMMs. P-values presented for the mixed models were 
derived from Satterthwaite’s degrees of freedom method 
using the ‘lmerTest’ package (Kuznetsova et  al. 2017). 
The 95% confidence intervals are presented for each coef-
ficient and were calculated using the confint function. 
We used the package ‘caret’ (Kuhn 2020) for splitting 
data that were used for model training and validation. 
Data were plotted using the ‘ggplot2’ package (Wickham 
2009). The data analysis procedure is described below.

First, we plotted each measurement variable (mass, tar-
sus, and culmen) against nestling age to determine the 
age ranges for which predictions would be the most accu-
rate and informative. We visually assessed the data in 
those plots to determine the age ranges selected for our 
analyses. Mass and tarsus were not as good of a predictor 
of age after 10 days as they were from 0 to 10 days. This 
was due to increased variation after day 10 (see Fig.  1a 
and Fig. 1b). Therefore, mass and tarsus were only used 
to predict nestling age up to day 10.
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As expected, the two different culmen measurements 
were distinct from each other and could not be used in 
the same predictive model (Fig. 1c). Specifically, 2015 is 
different from both 2016 and 2017 because of the two dif-
ferent measurement methods, as described previously. 
Therefore, we completed the model training and valida-
tion separately for these two culmen measurements. We 
also determined that culmen was accurate through day 
15. For 2015, age becomes slightly harder to predict after 
nestlings become 15  days old (greater amount of varia-
tion between culmen and age by visually assessing the 
data). Initial analyses also suggested that models were 
much less accurate if the full nestling period (0–21 days 
old) was included. Additionally, there are no data for 
2017 after day 15 (Fig.  1c). Therefore, culmen was only 
used to predict nestling age up to day 15 for these 2 years 
as well.

Mass, tarsus, and culmen were highly correlated (Pear-
son; mass-tarsus: r = 0.98, p < 0.001; n = 698; mass-cul-
men: r = 0.87, p < 0.001; n = 698; tarsus-culmen: r = 0.85, 
p < 0.001; n = 698) due to all three measurements increas-
ing as nestlings got older. Due to issues regarding mul-
ticollinearity in a multiple regression model, we created 
separate models for each of the measurement variables. 
We combined all 3 years for mass and tarsus in an effort 
to obtain models that were more general (i.e., did not 
over fit the data) for a given year. Again, culmen was sep-
arated into two data sets (2015 and 2016–2017), which 
gave us four measurement variables for the modeling 
procedure described next.

We created four LMMs with nestling ID as the ran-
dom effect to account for repeated measures of the same 
nestling over the course of the nestling period. The fixed 
effect in each model was the measurement variable 
(mass, tarsus, culmen 2015, and culmen 2016–2017). 
Models were fit using restricted maximum likelihood. 
The following model training and validation was applied 
to each measurement variable. We randomly split the 
data into two separate datasets: a model training data-
set containing 90% of the original data and a model test 
dataset containing 10% of the original data. Based on our 
samples sizes, we wanted to make sure that enough data 
were being used in model training to reduce the error 
surrounding the estimates as much as possible, but still 
have enough points to test the models.

The mixed model, with the structure described above, 
was created from the training dataset using the lmer 
function in the ‘lme4’ package. Since some relationships 
appeared curvilinear when graphed, we made two mod-
els for each variable: linear and quadratic (eight mod-
els total). For each model, the test dataset was used to 
validate the model derived from the training dataset by 
making predictions from the mixed models. We used 

Fig. 1  Initial mass (a), tarsus (b), and culmen (c) measurements 
collected from nestlings for 0–21 days of age. For final models, 
mass (a) and tarsus (b) were analyzed from 0 to 10 days because 
variation increased after day 10 and predictive power of models 
was reduced. Culmen (c) was analyzed from 0 to 15 days because 
variation increased after day 15 for 2015 and data was not collected 
passed day 15 in 2017. Red dashed lines show the age below which 
data were used for model development. In all three panels, points are 
jittered to see the spread of the data
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the ‘predict’ function in R to predict the age (in days) of 
nestlings using the individual nestling measurement. This 
resulted in a predicted age and an actual age (from the 
test data) for a given nestling. For each model, we cal-
culated the root mean square error (RMSE). RMSE is 
reported in days and is a measure of how the predicted 
ages differed, on average, from the actual ages. We chose 
between the linear and quadratic models using RMSE, 
since this is a measure of how well the model predicts 
nestling age. If there was a substantial drop in RMSE 
from the linear to quadratic model (> 10% decrease), 
then the quadratic model was used as the final model 
from which nestling age predictions were based. These 
final models were plotted with the best fit line, the actual 
ages (test data), and the predicted ages. Equations were 
obtained from the model coefficients and the y-intercept. 
The R2 values were obtained using the r.squaredGLMM 
function in the ‘MuMIn’ package (Barton 2019).

The code and documentation for data processing, 
model training, and model validation can be found on 
GitHub (https://​github.​com/​ChanL​and/​nestl​ing_​age_​
model). This code can be used to conduct these analyses 
for nestlings of any other bird species, provided there are 
sufficient data available on known ages and the corre-
sponding measurement(s) of interest.

Results
The model selection process (here, RMSE) to determine 
whether the linear or quadratic model should be used for 
predicting nestling age are presented for each develop-
ment variable (Table  1). For mass and tarsus, the quad-
ratic model did not improve our predictive power based 
on RMSE values (Table 1). Therefore, we chose the linear 
mixed model as the final model used to make the predic-
tions from mass and tarsus. Mass had a RMSE of 0.43, 
which means that mass is accurate, on average, to within 

a half day. Tarsus is accurate to within 0.68 days. For both 
culmen measurements, RMSE decreased from the linear 
to the quadratic model (Table 1). Because the predictive 
power got better, we chose the quadratic model as the 
final model. Culmen 2015 is accurate to within 0.59 days 
and culmen 2016–2017 is accurate to within 0.70 days.

The model validation is shown graphically in Fig.  2. 
The full dataset used is shown for mass (Fig. 2a), tarsus 
(Fig. 2b), culmen 2015 (Fig. 2c), and culmen 2016–2017 
(Fig.  2d). In each panel, the full dataset is split into the 
training data (gray points) and the test data (purple 
points). The green points are the predicted nestling ages 
from the final mixed models (described above) using the 
nestling measurement variables from the test data. Each 
green point is connected to the corresponding purple 
point (actual nestling age) by a vertical black line. The 
average difference between the predicted age and the 
actual age is measured by the RMSE (Table 1).

The output for the final model (linear for mass and 
tarsus, quadratic for both culmen measurements) is pre-
sented along with an equation that was created from the 
model coefficients (Table 2). These equations can be used 
with measurement data for each variable to estimate the 
age of unknown nestlings. The Additional file 1: Table S1 
contains the mean, minimum, and maximum values for 
the mass, tarsus, and both culmen measurements for 
each nestling age from 0 to 21 days old.

Discussion
The most accurate nestling age would result from check-
ing a nest daily until eggs hatch to determine a hatch 
date, however that is not always feasible. Checking a nest 
daily is time consuming, expensive, can cause stress on 
the birds, and can lead to increased predation (Wails 
et al. 2014). In this study, we developed a set of field tools 
designed to improve age estimates of Western Bluebird 
nestlings for use by researchers of varying levels of expe-
rience without having to determine the exact hatch date. 
We transformed 3 years of morphometric field data into 
predictive models for estimating nestling age. All of the 
measurement variables we used to develop our models 
are accurate to within less than a day: mass is accurate 
to within 0.43 days, tarsus is accurate to within 0.68 days, 
culmen 2015 is accurate to within 0.59  days, and cul-
men 2016–2017 is accurate to within 0.70 days. Our high 
accuracy species-specific guide is a resource for ensur-
ing quality data and research on the Western Bluebird. 
The novelty of our study is that the model training and 
validation methods used here can be applied to any other 
passerine species provided enough accurate daily growth 
data are collected to develop robust growth models. In 
addition, assigning process-based age estimates ensures 
all field crews in a given study and across different studies 

Table 1  Root mean square error (RMSE) for the linear and 
quadratic mixed models

RMSE is a measure of the difference between predicted age and actual age 
during model validation
a Denotes the final model that was chosen

Variable Power RMSE

Mass Lineara 0.43

Quadratic 0.42

Tarsus Lineara 0.68

Quadratic 0.69

Total culmen Linear 0.72

Quadratica 0.59

Culmen from tip of nares Linear 0.86

Quadratica 0.70

https://github.com/ChanLand/nestling_age_model
https://github.com/ChanLand/nestling_age_model
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are aging birds exactly the same way and it reduces the 
subjectivity of the estimates. This results in more robust 
comparisons between studies of a specific species.

Growth curves of most passerines follow a logistic 
pattern characterized by an inflection point that occurs 
when 50% of the asymptote is attained (Pinkowski 1975; 
Starck and Ricklefs 1998). Traditional growth models for 
avian species are presented with age as the independent 
variable (Holcomb and Twiest 1971; Lyons and Mosher 
1983;  Bortolotti 1984a; Bechard 1985;  Carlsson and 
Hörnfeldt 1994; Rodway 1997) to demonstrate the logis-
tical growth pattern. The predictive models we developed 

consider age the dependent variable determined by mor-
phometric field measurements, as age is the variable we 
are predicting. By first graphing the data set, we were 
able to visually assess the accuracy range for each mor-
phometric measurement. Model validation provided 
metrics of accuracy for each measurement variable.

Young nestlings do not display some obvious physi-
cal characteristics for aging (e.g., feather tract develop-
ment). Therefore, growth models can aid in capturing 
early life stage data. Reliable methods for estimating the 
age of nestlings is important for investigating ecological 
and behavioral aspects of a species (Amiot et  al. 2014). 

Fig. 2  Final model based on training data and model validation results for mass (a), tarsus (b), culmen 2015 (c), and culmen 2016–2017 (d). For each 
panel, gray points are the training data used for model training. Purple points are the test data (actual ages), while the green points are the ages 
predicted from the final model. The predicted age from the model is connected to the actual age by the vertical black lines. The black lines are the 
regression lines and are linear for mass and tarsus and quadratic for both culmen measurements. Shaded blue areas represent the 95% confidence 
intervals. In all four panels, points are jittered to see the spread of the data
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The reliability of our research is dependent upon normal 
variation in individuals and may vary between growth 
parameters. In addition, factors such as asynchronous 
hatching on a finer timescale could add some variation 
between nestlings. Western Bluebirds are facultative 
cooperative breeders, with a small proportion of breed-
ing pairs having helper males at the nest (Dickinson 
et al. 1996; Duckworth and Badyaev 2007; Potticary and 
Duckworth 2018). We did not have any way to identify 
that in this study, but it should be a consideration for 
future work, especially for other species using this tactic 
more often such as the Acorn Woodpecker (Melanerpes 
formicivorus) (Koenig et  al. 2011). Single morphomet-
ric measurements can be used to predict nestling age 
with high accuracy. However, the combination of two or 
more measurements may increase the accuracy of age 
prediction.

The two different culmen measurements show the 
importance of identifying  which technique should be 
used and training of field crews before collecting meas-
urements to estimate age. Misinterpretation of measure-
ment techniques by different field crews can result in 
inaccurate age predications. We provided both here so 
that both culmen measurement techniques can be used 
to predict nestling age. However, we emphasize that 
researchers should pick one technique for a given field 
season to avoid erroneous measurements and age estima-
tions and to make sure the method used is documented.

If researchers plan to use our data for other Western 
Bluebird populations, we recommend that they test the 
models developed in this study with a few nestlings of 
known ages before relying exclusively on our models. It 
is known that passerine nestlings can exhibit variation in 
developmental patterns both within and among differ-
ent geographic locations (Ardia 2006). The data ranges 
in the Additional file  1: Table  S1 should be used to aid 

in age determinations in the field. If researchers plan to 
use these techniques to develop their own models for 
other species, we recommend gathering morphomet-
ric measurement data on individual nestlings for which 
the hatch date is known or can be inferred from fre-
quent visits to the nest. Measurements should be taken 
on at least 30 nestlings. Ideally, this should be done over 
at least two field seasons to account for potential vari-
ation between years. Variation can occur from multi-
ple factors including but not limited to, environmental 
influences, researcher bias, sibling competition, hatch 
order if eggs are hatching asynchronously, and whether 
or not there are helpers assisting with nest provision-
ing. When taking measurements, nestlings should be 
measured every day from day 0 to when they fledge. A 
greater number of nestlings in the dataset increases the 
accuracy of the models in predicting ages from the mor-
phometric measurements taken. Once the morphometric 
data are collected, researchers should use the R code and 
documentation for data processing, model training, and 
model validation on GitHub referenced in the methods.

Conclusions
All measurement variables were accurate to within less 
than a day and two were accurate to within half a day. We 
discourage the use of the equations beyond the valid age 
ranges shown in Table 2. The models for calculating age 
from tarsus and mass are only valid for nestlings 10 days 
old and younger, as these metrics begin to plateau at this 
point, and thus observed changes are most likely due 
to observer bias (especially for tarsus), and variation in 
parental feeding success (mass). Similar patterns are seen 
in the culmen measurements, which make them less reli-
able at estimating nestling age greater than 15 days old. 
Once a given measurement is not reliable, the range of 
measurements for 0–21 days of age provided (Additional 

Table 2  Linear mixed model results for each morphometric measurement that can be used to estimate age of Western Bluebird 
nestlings

Final equations were obtained from the model coefficients. Mass and tarsus measurements should only be used to estimate ages 10 days old and younger. Both 
culmen measurement techniques can be used to estimate age to day 15. For the quadratic models, the 95% CIs, t-values, and degrees of freedom (df ) are listed for 
each of the coefficients (x2 and x) in the equation

CI confidence interval

Developmental measurement Model output Equation for estimating age 95% CI of coefficients t-value (df) Valid 
range 
(days)

Mass (g) R2 = 0.96, P < 0.001 Age = 0.43x − 0.68 0.424–0.439 114.3 (372.8) 0–10

Tarsus length (mm) R2 = 0.95, P < 0.001 Age = 0.64x − 3.1 0.625–0.648 112.7 (369.1) 0–10

Total culmen (mm) R2 = 0.97, P < 0.001 Age = 0.14x2 + 1.33x − 3.67 x2: 0.102–0.173 x2: 7.58 (132.3) 0–15

x: 0.962–1.69 x: 7.13 (132.3)

Culmen from tip of nares (mm) R2 = 0.96, P < 0.001 Age = 0.26x2 + 1.47x − 3.82 x2: 0.205–0.318 x2: 9.12 (402.8) 0–15

x: 1.02–1.93 x: 6.39 (406.2)
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file 1: Table S1) will aid in narrowing down the age esti-
mation for older nestlings.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s40657-​021-​00258-5.

Additional file 1: Table S1. The mean, minimum, and maximum values 
for the mass, tarsus, and both culmen measurements for each nestling 
age from 0 to 21 days old.
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