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Abstract

Background: The Great Plains of the United States includes a large number of hybrid and contact zones between
bird species. The amount of gene flow between sister species in these zones ranges from very rare hybridization
events to widespread and prevalent introgression. Some of these avian systems have been studied extensively, while
others have been indeterminate of whether hybridization exists in areas of sympatry. Using genomic-level approaches
allows investigation of genomic patterns of hybridization and gene flow between species—or lack thereof.

Methods: We investigated a narrow zone of sympatry in Nebraska, USA between pewee species (Contopus sordidu-
lus and C. virens), for which no hybridization has been confirmed. We used thousands of single nucleotide polymor-
phisms to identify potential hybridization and investigate genomic patterns of differentiation between these two

species.

Results: We found evidence of multiple hybrid individuals in the contact zone. Little genomic variation was fixed
between species, but a large proportion had differentiated allele frequencies between species. There was a positive
relationship between genetic differentiation and chromosome size.

Conclusions: We provided the first conclusive evidence of hybridization between C. sordidulus and C. virens, in a
region where secondary contact likely occurred due to human disturbance and habitat modification. The genomic
patterns of differentiation affirm that these species split in the relatively recent past. Finally, the relationship of chro-
mosome size and genetic differentiation may have resulted from differential rates of chromosomal recombination in
songbirds and genetic differentiation between species largely due to genetic drift (possibly in concert with selection).
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Background

An enduring emphasis of evolutionary biology is inves-
tigating the mechanisms responsible for preventing
gene flow between closely related species (Mayr 1942).

*Correspondence: jdmanthey@gmail.com

! Biodiversity Institute, University of Kansas, Dyche Hall, 1345 Jayhawk
Blvd,, Lawrence, KS 66045-7561, USA

Full list of author information is available at the end of the article

( BioMVed Central

The “natural laboratories” to study these questions are
contact zones between closely related species (Hewitt
1988), where species may—or may not—hybridize. A
classic clustering of contact and hybrid zones is located
in the Great Plains of south-central Canada and the
central United States (Rising 1983; Swenson and How-
ard 2005) where more than a dozen closely-related
pairs of bird species meet in partial sympatry, includ-
ing genera of owls (Megascops), woodpeckers (Colaptes,
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Melanerpes), and songbirds (Contopus, Cyanocitta,
Poecile, Baeolophus, Sturnella, Icterus, Pheucticus, Pas-
serina, and Pipilo; Rising 1983). Hybridization in these
closely-related species ranges from only a few reports
(e.g., Cyanocitta cristata and C. stelleri) to widespread
and frequent hybridization [e.g., Colaptes auratus
(red-shafted and yellow-shafted phenotypic variants);
Grudzien et al. 1987]. The nature of several of these
hybrid zones, including Passerina buntings, Icterus ori-
oles, and Pheucticus grosbeaks have been investigated
extensively using both morphological and genetic anal-
ysis techniques (Carling and Brumfield 2008; Carling
et al. 2011; Mettler and Spellman 2009).

One of the contact zones, where the Western Wood-
pewee (Contopus sordidulus) and Eastern Wood-pewee
(C. virens) come into contact, has not been investigated
thoroughly, and it is unknown whether hybridization
occurs. The scarcity of sympatry between these species
in breeding distributions and almost complete overlap
in plumage morphology and morphometric characters
(Rising and Schueler 1980; Rising 1983; Pyle 1997) has
thus far precluded positive identification of hybridiza-
tion. In Kansas and Montana, two investigations using
museum voucher specimens and morphological meas-
urements failed to conclusively identify hybrids (Rising
1965; Rising and Schueler 1980)—albeit with small sam-
ple sizes. The authors in both of these studies suggest
that hybridization is possible, if not probable, between
the two Contopus species, but lack data to document the
phenomenon.

Because the species are generally identified via geogra-
phy or song (Rising and Schueler 1980) and have a great
deal of plumage overlap, investigation of possible hybrid-
ization may be best facilitated with genetic data. With the
recent increase in genomic techniques for phylogeogra-
phy and systematics [e.g., restriction-site associated DNA
sequencing (RAD-seq); Miller et al. 2007], investigations
into hybridization may now take a genomic approach.
Because songbirds have strong interchromosomal syn-
teny (Kawakami et al. 2014) and genomic resources
(Estrildidae: Taeniopygia guttata annotated genome;
Warren et al. 2010), these resources may be combined
with thousands of genetic loci to identify genomic
regions with reduced introgression via hybridization or
increased levels of fixed differences in parental popula-
tions (e.g., the Z chromosome).

Using 20 Contopus individuals across a narrow zone of
sympatry in Nebraska, USA (Fig. 1a) and 11 pure parental
individuals (away from zone of sympatry), we obtained
thousands of loci to investigate potential hybridization
between C. sordidulus and C. virens, and ask the follow-
ing questions:
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Fig. 1 Sampling and genetic structure of all individuals. a Localities
sampled in this study in Nebraska and Missouri, USA. Colors cor-
respond to pure C. sordidulus (dark red), pure C. virens (blue), or mixed
(light purple). b STRUCTURE and NewHybrids results for the 50 and
75 % coverage matrices (CM). Fach column represents the posterior
probability of clustering to genetic groups (STRUCTURE) or parental/
hybrid classes (NewHybrids). Localities with an “S" subscript had indi-
viduals with intermediate (i.e., possible hybrid) song that were unable
to be collected (see “Results”and “Discussion”)

1. Is there hybridization between Contopus species?

Hy: There is a lack of evidence of hybridization
between species.
H,: There is evidence of infrequent hybridization.

2. If hybridization is detected, is gene flow between spe-
cies biased to certain genomic regions?

H,: Gene flow is consistent across the genome.
H,: The Z chromosome has less gene flow between
species.

Methods

Sampling

Fresh tissue samples of 31 C. sordidulus and C. virens
were obtained from Nebraska and Missouri, USA (Fig. 1a;
Table 1) during summer 2014. For some of these indi-
viduals, song was recorded (Table 1). Two sites consisted
of relatively large Ponderosa Pine (Pinus ponderosa)
plantations that were initially hand planted in 1902: (1)
Steer Creek campground (Locality 2 of Fig. la; Table 1),
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Table 1 Specimen data

KU # ID Loc. Lat. Long. # Reads RAD Cov. Macaulay #
123169 sordidulus 1 42.766 —103.927 1,079,094 64.4 (42.6)

123170 sordidulus T 42.766 —103.927 806,037 49.0 (34.6)

123171 sordidulus 1 42.766 —103.927 1,548,056 94.0 (62.7)

123168 sordidulus 1 42766 —103.927 2,089,666 1184 (77.0)

123161 sordidulus 2 42.607 —101.164 294,705 180(11.2)

123162 sordidulus 2 42.607 —101.164 1,420,181 1(47.8) 515875
123163 sordidulus 2 42.607 —101.164 590,477 326 (21 8)

123164 sordidulus 2 42,607 —101.164 3,176,097 1803 (116.1)

123165 sordidulus 2 42.607 —101.164 279,508 19.3(12.4) 515877
123166 sordidulus 2 42607 —101.164 577,213 37.1(25.4) 515879
123167 sordidulus 3 42.785 —100.93 719,346 46.8 (32.0) 515893
123176 BX sordidulus 4 42.794 —100.635 2,540,709 1256 (82.7) 515908
123177 sordidulus 4 42.794 —100.635 731,836 40.0 (25.9)

123179 sordidulus 4 42.795 —100.633 1,525,266 79.1 (52.7) 515909
123178 sordidulus 4 42.795 —100.626 2,677,440 163.1 (109.6)

123175 virens 5 42901 —100476 608,266 34.2(215)

123174 F2 5 42.901 —100.476 459,940 274(17.5) 515903
123172 virens 5 42.901 —100.476 1,008,597 64.1 (45.1) 515906, 201685
123173 sordidulus 5 42901 —100476 610,039 30.2 (20.0)

123160 sordidulus 6 41.829 —100.311 756,038 48.0(32.1) 515864
123180 virens 7 42.826 —100.142 681,124 28.6(18.6) 515921
123183 virens 8 42,669 —99.768 1,126,351 58.8(38.9)

123181 virens 8 42.666 —99.776 853,277 429(27.7)

123182 virens 8 42.668 —99.772 4,309,626 241.7 (162.2)

123186 virens 9 42.378 —98.113 3,253,913 189.1 (126.5)

123185 virens 9 42378 —98.113 1,173,340 60.4 (41.1)

123184 virens 9 42.379 —98.118 1,293,998 67.0 (44.3)

123187 virens 10 39.951 —94.99 989,725 61.2(41.3)

123188 virens 10 39951 —94.99 2,564,719 149.6 (103.6)

123189 virens 10 39.951 —94.99 1,069,467 60.7 (39.2)

123190 virens 10 39.951 —94.99 1,633,129 90.6 (61.0)

List of voucher specimens used in this study (KU # from University of Kansas Natural History Museum), identification of individual based on genetic results (ID;
BX = backcross), localities from Fig. 1a (Loc.), coordinates of collecting locales (Lat., Long.), number of RAD-seq sequencing reads (# Reads), sequencing coverage of
the loci used in this study for each individual (RAD Cov.; mean and SD; based on the 50 % coverage matrix list of loci), and accession information about individuals

with song recordings (Macaulay #)

Samuel McKelvie Nebraska National Forest, north-cen-
tral Cherry County, Nebraska; (2) Bessey District of the
Nebraska National Forest, Thomas County (Locality 6 of
Fig. 1a; Table 1). Prior to planting both areas consisted of
Sandhill prairie and thus would not have provided Con-
topus breeding habitat. Today, the mature plantations
continue to be surrounded by grasslands (USDA For-
est Service 2015). Five other sites were sampled in close
proximity to these two hand-planted forests (Locali-
ties 3, 4, 5, 7, 8 of Fig. 1a; Table 1). An additional three
sites were assessed with presumed pure populations of
each taxon taken far removed from the contact zone in
northwest Nebraska (sordidulus; Locality 1 of Fig. 1a;
Table 1) and eastern Nebraska and northwest Missouri

(virens; Localities 9 and 10 of Fig. 1a; Table 1). One sam-
ple of C. pertinax was included as an outgroup to con-
firm that ingroup samples were more closely related and
no mistakes were made handling tissues. We used a QIA-
GEN DNeasy blood and tissue extraction kit to extract
genomic DNA for each individual.

Laboratory procedures and SNP dataset creation

To obtain single nucleotide polymorphism (SNP) data
from all individuals, we performed a modified RAD-
seq (Miller et al. 2007) protocol identical to that used
by Manthey and Moyle (2015). Briefly, we digested sam-
ples with the restriction enzyme Ndel, multiplexed with
one barcode per individual, and size selected fragments
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between 500 and 600 bp using a Pippin Prep electropho-
resis cassette (Sage Science). DNA quality and quantity
was tested using quantitative polymerase chain reaction
and the Agilent Tapestation, followed by sequencing
of 100 bp single-end reads on a partial lane of an Illu-
mina HiSeq2500 performed at the University of Kansas
Genome Sequencing Core Facility.

We used the STACKS (Catchen et al. 2013) pipeline to
assemble loci de novo from the Illumina sequencing run
data files. Sequences were screened for quality, includ-
ing removal of sequences lacking the restriction site or
containing possible adapter contamination. We used the
default settings of the ustacks, cstacks, and sstacks mod-
ules in STACKS. Finally, we used the populations mod-
ule of STACKS to create SNP datasets, with the following
restrictions: a minimum allele frequency of 0.05, a mini-
mum stack depth of five, and observed heterozygosity
less than 0.5 (to reduce paralogous loci included). With
these restrictions, we created two datasets, where loci
needed to be represented in 50 or 75 % of individuals to
be included (i.e., 50 and 75 % coverage matrices, respec-
tively). To assess robustness of minimum stack depth,
we reran the last step of STACKS with different values
of minimum stack depth (m = 1, 5, 10, 20). Based on
these different values, genetic differentiation (Fgr) among
localities did not change (R > 0.96 all comparisons); we
therefore continued all subsequent analyses with the
original settings.

Genetic structure and identification of hybrids

We used the program STRUCTURE (Pritchard et al.
2000) to investigate genetic structure and potential
admixture between species. We initially inferred lambda
with a fixed number of genetic clusters (k = 1). In sub-
sequent runs, we used the inferred lambda with a fixed
number of genetic clusters (k = 2) and using the admix-
ture model. Five replicates were run for each dataset,
using 50,000 steps as burn-in, followed by 100,000 sam-
pled iterations. To explicitly identify hybrids, we used the
program NewHybrids (Anderson and Thompson 2002),
which calculates the posterior probability of an individual
being a parental, F1, F2, or backcross. Because the pro-
gram would not work with the large number of SNPs in
our datasets, we limited this analysis to the 75 % cover-
age matrix (CM) inclusive of only SNPs with a minor
allele frequency greater than 0.3 (similar to the reduction
technique used by Bell et al. 2015). We ran this program
with 100,000 burn-in steps with 100,000 iterations subse-
quently sampled.

BLAST+ analyses
To investigate differential genetic structure between
species per chromosome, we used the BLAST+
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utility (Camacho et al. 2009) to match RAD-seq loci
with Zebra Finch (Taeniopygia guttata) chromo-
somes. The high levels of interchromosomal synteny
in songbirds (Kawakami et al. 2014) allow matching of
loci to chromosome, but frequent intrachromosomal
recombination precludes inference of chromosomal
position of each locus. We used all loci in the 50 % cov-
erage matrix, which is inclusive of all loci from the less
restrictive matrix. Here, to be considered a match to
Zebra Finch chromosomes, the sequence needed 70 %
sequence identity and a maximum e value of 0.01. Mul-
tiple e values (0.01, 0.001, 0.0001) were tested to ensure
robustness of results; all results with different e values
showed highly related number of loci per chromosome
(R? > 0.99). Thus, results with an e value of 0.01 were
hereafter used.

For all individuals that were genetically pure based on
STRUCTURE analyses (see “Results’;, Fig. 1), we esti-
mated the Fg between the two Contopus species. We did
this in order to assess whether sex chromosomes showed
increased differentiation between species (e.g., Passerina
buntings, Carling and Brumfield 2009), or whether there
was a pattern related with chromosome size and F¢ (e.g.,
Certhia treecreepers, Manthey et al. 2015, 2016). All val-
ues of Fgp were estimated using STACKS.

Results

Genetic data

Illumina sequencing of 31 Contopus sp. individu-
als resulted in a total of ~42 million sequencing reads
(Table 1). The number of reads was highly variable
among individuals (mean ~1.3 million reads, SD ~980
thousand reads). This resulted in a total of ~3.9 billion
quality-trimmed sequenced base pairs. The coverage
was generally high (mean ~77 reads per included SNP
locus; Table 1) but also variable across individuals (SD
~56 reads per SNP locus). In the total dataset, there were
419285 RAD-tags; when limited to the 50 and 75 % cov-
erage matrices, this resulted in datasets with 5538 loci
(18838 SNPs) and 2064 loci (7499 SNPs), respectively.

Of the ten localities sampled, eight were genetically
pure for C. sordidulus or C. virens (Fig. 1b) based on
STRUCTURE results. Two localities had individuals with
possible mixed ancestry (i.e., potential hybrids, Localities
4 and 5 in Fig. 1b). This was reinforced with results of the
NewHybrids analysis, which identified strong probabil-
ity for a backcross C. sordidulus and an F2 hybrid in the
same localities (Fig. 1b).

Among polymorphic SNPs, little was fixed between
pure C. sordidulus and C. virens (using non-hybrid indi-
viduals, Fig. 2a). The majority of fixed differences (~50 %)
were on the largest chromosome (Chr. 2), with others
spread across chromosomes (Chr. 1, 4, 8, 10). While a
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large proportion of polymorphisms were private to either
sordidulus or virens, about one-third of genetic variation
was shared between species (Fig. 2a).

Given the inherent lack of fixed differences between
species and apparent strong genetic structure (Fig. 1b),
we investigated differential allele frequencies between
species. We found large numbers of segregating poly-
morphisms (Fig. 2b), with ~10 % of non-private genetic
variation with allele frequency differences at a 90-10 %
ratio (i.e., 90 % major allele in one lineage and less than
10 % in the other lineage). The high number of loci with
strong allele frequency differences between species likely
lead to the strong genetic structure patterns observed in
STRUCTURE analyses (Fig. 1b).

Between the two species the Z chromosome had one
of the highest Fyr values (0.176) across all chromosomes,
but it did not appear to be an outlier based on chromo-
some size (Fig. 3). Overall, across well-sampled chromo-
somes (>10 loci per chromosome) there was a positive
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Fig. 3 Relationship of chromosome size and genetic differentiation.
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relationship between chromosome size and genetic dif-
ferentiation (R* = 0.34, p = 0.006) assuming interchro-
mosomal synteny in songbirds (Kawakami et al. 2014).

Song recordings

For some specimens, in addition to genetic information,
song recordings were also collected. Because the two spe-
cies have distinctive primary songs (Rising and Schueler
1980), we investigated recordings in a qualitative fash-
ion. We direct readers to Xeno-Canto (xeno-canto.org)
and the Cornell Lab of Ornithology’s Macaulay Library
(macaulaylibrary.org) where typical song types of both
species may be simultaneously examined aurally and
spectrographically. Here, we report on individuals as hav-
ing typical or aberrant call types (accession information
of recordings with specimens in Table 1).

In 2011, Robbins recorded individuals from Steer Creek
campground (Locality 2 of Fig. 1a) and identified two pre-
sumed males in a minimum of seven pairs that may have
involved hybrids (song accessions: ML 172380, 172385,
172387). These initial observations prompted collection
of more recordings and genetic samples in 2014. Song
recordings of individuals at the same location on 19
June 2014 (Locality 2 of Fig. 1a) produced only sordidu-
lus males (at least 12 territorial males; ebird checklist:
$18839266; ML 515869-72; 515874-79; six specimens
with genetic data; Table 1). Further west (Localities 3
and 4 of Fig. 1a), all recorded individuals gave typical sor-
didulus call (ML 515893, 515907, 515909), even an indi-
vidual identified as a backcross sordidulus (Table 1; ML
515908). At the Niobrara National Wildlife Refuge along
the Niobrara River (Locality 5 of Fig. 1a), one genetically
virens bird gave a typical virens call (ML 515906, 201685),
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while an F2 individual gave a somewhat aberrant virens
call (ML 515903). To the south, at the Bessey District of
Nebraska National Forest, both song types were recorded
(Locality 6 of Fig. la); here, two virens-like individu-
als were audio recorded but not collected. One of these
repeatedly gave a song that appeared to have characteris-
tics of both Contopus. It gave a virens-like slurred whistle,
but it had the burry quality of sordidulus (ML 515859).
The other virens-like bird, also not collected, appeared to
have a more typical virens-like song (ML 515863). Five
other males recorded at this site—one that was collected
(KU 123160)—were sordidulus (ML 515864—7). Lastly,
one bird in western Keya Paha County (42.832, —100.154;
~1.5 km from Locality 7 of Fig. 1a), gave intermediate
song (ML 515920), but was not collected.

Discussion

Distributional changes resulting in secondary contact

and hybridization

Prior to European settlement most of the Great Plains
was much less forested due to bison grazing and regular
fires (Roe 1970; Brown 1993; Stewart 2002); therefore,
Contopus contact during the breeding season, if there
was any, would have been very limited and likely would
have been restricted to narrow riparian corridors west
of the 100th meridian west (Rising and Schueler 1980;
Sharpe et al. 2001). With the elimination of bison, sup-
pression of fire, and anthropogenic planting of trees dur-
ing the past ca. 150 years much of the Great Plains has
become forested, especially along river corridors; this has
facilitated recent contact among a number of avian spe-
cies, including Contopus (Rising 1983).

Within Nebraska, the earliest historical information
indicates that the two Contopus species were not in con-
tact in the early part of the 20th century, as it is believed
that C. sordidulus was restricted to west of —100° lon-
gitude and C. virens had not yet expanded west to that
meridian. Swenk and Dawson (1921) remarked that the
two “do not anywhere meet” During that period, C. sor-
didulus reached as far east as Thomas County along the
Dismal River (Bruner et al. 1904). During subsequent
decades both species likely expanded breeding distribu-
tions within the state, sordidulus eastward, virens west-
ward. Short (1961) believed that limited contact might
occur along the Niobrara River Valley between Valentine
and the Pine Ridge region and he noted to the south that
virens was found as far west as the Colorado border along
the South Platte River.

In the region that we sampled, our genetic (STRUC-
TURE and NewHybrids results, Fig. 1b) and vocal data
indicate a very narrow contact zone between these two
Contopus species in north-central Nebraska (Fig. 1a).
In 2011, Robbins noted multiple pairs (ebird checklist:
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58389263) of Contopus breeding at the relatively large
Ponderosa Pine (Pinus ponderosa) plantation at the Steer
Creek campground (Locality 2 of Fig. 1a; Table 1); while
initial recordings (from 2011) suggested possible hybrid
individuals, sampling in 2014 indicated only sordidulus
individuals (see “Results”). From the 2014 specimens
with genetic data, two had a small probability of being
sordidulus backcrosses (Fig. 1b). This may suggest that
areas of sympatry vary through time. As both species are
migratory, this may simply be a case of which individuals
set up territories earliest in areas where pine and riparian
habitats coincide.

In Central Nebraska, at the Bessey District of Nebraska
National Forest (Locality 6 of Fig. 1a), one individual with
genetic data was pure sordidulus. However, both species
were present in this area based on song recordings, with
one appearing to have characteristics of both Contopus
(ML 515859; see “Results”). All individuals were in Pon-
derosa Pine-dominated upland forest. None were found
along the narrow riparian strip, <2 km in length, of the
Middle Loup River through this national forest. This area
deserves further investigation.

The other area of contact that we identified was
centered along the Niobrara River in the vicinity of
Valentine. Just to the southwest of Valentine, where
Ponderosa Pine was on the slopes and riparian vegeta-
tion was along the river, birds were audio recorded and
collected (Locality 4 of Fig. 1a; Table 1). Here, one of
four individuals with genetic samples was identified
as a backcross sordidulus (Fig. 1b). A few kilometers
to the east of Valentine, at Niobrara National Wildlife
Refuge along the Niobrara River (Locality 5 of Fig. 1a;
Table 1) sordidulus was in pines upslope from the
lower riparian-inhabiting virens. At this location, one
individual was strongly identified as an F2 hybrid, with
another individual potentially being a backcross virens
(Fig. 1b).

Patterns of genomic differentiation

Because of the presumed lack of hybridization until
recently, the evolution of these sister species likely
occurred in allopatry throughout much of the recent
past. Cicero and Johnson (2002) found only 1.7 %
sequence divergence in the mitochondrial cytochrome
B gene between C. sordidulus and C. virens, less than
intraspecific differences in other bird species with east—
west splits in North America (e.g., Certhia americana,
Manthey et al. 2011; Sitta carolinensis, Spellman and
Klicka 2007), and suggestive that the split between these
two Contopus species occurred relatively recently. It was
thus not surprising that little of the nuclear genome was
fixed (~0.3 %) between these species near a contact zone
(using non-hybrid individuals, Fig. 2a).
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Because of increased genetic differentiation and
reduced gene flow on the Z chromosome in many hybrid-
izing bird species, including Ficedula flycatchers (Ellegren
et al. 2012), Luscinia nightingales (Storchova et al. 2010),
Passer sparrows (Elgvin et al. 2011) and Passerina bun-
tings (Carling and Brumfield 2008, 2009), we investigated
differential patterns of genetic differentiation among
chromosomes. The Z chromosome had one of the high-
est Fgp values (0.176) between species across all chro-
mosomes, but it did not appear to be an outlier based on
chromosome size (Fig. 3). Across well-sampled chromo-
somes (>10 loci per chromosome) there was a positive
relationship between chromosome size and genetic differ-
entiation (R*> = 0.34, p = 0.006) assuming interchromo-
somal synteny in songbirds (Kawakami et al. 2014). This
relationship has been found in one other North American
songbird species (Certhia americana, Manthey et al. 2015,
2016), although the relationship observed here in pewees
is not as strong (R* > 0.8 in Certhia).

In Certhia, this pattern was hypothesized to be due to
genetic drift across chromosomes, with differential recom-
bination frequencies among chromosomes due to negative
scaling of recombination rates with chromosome size due
to meiotic recombination requirements (Lynch 2007). This
hypothesis was largely owing to an assumed lack of hybrid-
ization between Certhia lineages, leading to no strong
patterns of similar selective pressures across lineages (i.e.,
only independent selective pressures) and the genomic
signal sampled being due to genetic drift through time in
allopatry. Many similarities exist between the Certhia and
Contopus systems: (1) A presumed lack of widespread
hybridization, at least until recently, (2) habitat differences
between lineages/species which could lead to non-random
gene flow and subsequent genetic differentiation (Edelaar
and Bolnick 2012), and (3) dialect or song differences that
could act as a pre-mating isolation mechanism. Because
of a potential selective mechanism (e.g., song recognition
signal or other factors) there appears to be no strong selec-
tion against hybrids allowing the signal of genetic drift to
be the main force observed in our data, although our data
does not preclude the possibility of selection contributing
to this pattern. These similarities suggest that pre-mating
isolation mechanisms may result in a positive relationship
between chromosome size and genetic differentiation—
at least in oscine passerines songbirds—due to the high
variance in chromosome size (and relative recombination
rates) and a steady rate of genome-wide genetic differen-
tiation—easily observable in RAD-seq datasets compared
to specific loci under selection—due to genetic drift.

Conclusions
We provide the first conclusive evidence of hybridization
between C. sordidulus and C. virens in a narrow zone of
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sympatry in central Nebraska, USA based on thousands
of single nucleotide polymorphisms across the genome.
Contact is a result of contemporary human disturbance
and did not likely occur in the past in Nebraska. The two
species have little fixed differences (~0.3 % of genetic
variation), although a large proportion of polymorphisms
have highly differentiated allele frequencies between
species. Additionally, we found a positive relationship
between genetic differentiation and chromosome size,
likely caused by minimal hybridization and a large pro-
portion of observed genetic differentiation due to genetic
drift, potentially in concert with selection.
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