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Abstract

Background: Seasonal adjustments in body mass and energy budget are important for the survival of small birds
in temperate zones. Seasonal changes in body mass, body temperature, gross energy intake (GEI), digestible energy
intake (DEI), body fat content, as well as length and mass of the digestive tract, were measured in Chinese Bulbuls
(Pycnonotus sinensis) caught in the wild at Wenzhou, China.

Methods: Body mass was determined with a Sartorius balance. The caloric contents of the dried food and feces
were then determined using a oxygen bomb calorimeter. Total fat was extracted from the dried carcasses by ether
extraction in a Soxhlet apparatus. The digestive tract of each bird was measured and weighed, and was then dried
to a constant mass.

Results: Body mass showed a significant seasonal variation and was higher in spring and winter than in summer
and autumn. Body fat was higher in winter than in other seasons. GEI and DEI were significantly higher in winter.
The length and mass of the digestive tract were greatest in winter and the magnitude of both these parameters
was positively correlated with body mass, GEI and DEI. Small passerines typically have higher daily energy expenditure
in winter, necessitating increased food consumption.

Conclusions: This general observation is consistent with the observed winter increase in gut volume and body mass
in Chinese Bulbuls. These results suggest that Chinese Bulbuls adjust to winter conditions by increasing their body
mass, body fat, GEI, DEI and digestive tract size.
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Background
Small birds usually show seasonal changes in morphology,
physiology and behavior in response to altered environmen-
tal conditions (Swanson, 1991; Zheng et al., 2008a, 2008b;
Nzama et al., 2010; Liknes and Swanson, 2011). Seasonal
changes in the energy requirements of birds, as well as in
food availability and quality, affect their ability to obtain
and digest food (Karasov, 1990). From the point of view of
energy requirements, winter is a stressful period for small
birds in temperate zones, because thermoregulatory costs
increase while food quality and availability decrease (Yuni
and Rose, 2005). The risk of energy requirements exceeding
the seasonally available food supply is a strong selective
pressure for the evolution of morphological, physiological
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and behavioral adaptations that enhance the probability of
survival over winter (Novoa et al., 1996; McWilliams and
Karasov, 2001; Starck and Rahmaan, 2003; Hegemann
et al., 2012). For birds maintaining constant body mass and
body composition, time–averaged energy intake equals
time–averaged energy use (Hammond and Diamond,
1997). This balance depends on the interplay between the
intake and digestive processing of matter and energy and
their allocation among diverse functions, including thermo-
regulation, growth and reproduction (Afik and Karasov,
1995; Starck and Rahmaan, 2003; Caviedes–Vidal et al.,
2007). Increased food intake, hypertrophy of the gastro-
intestinal tract and the consequent increased absorption of
nutrients may be viewed as responses by wintering birds to
physical and biotic seasonal habitats (Novoa et al., 1996,
McWilliams and Karasov, 2001).
Phenotypic flexibility is the induced modification of a

morphological or physiological trait in response to changes
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in environmental conditions (Piersma and Drent, 2003;
Starck and Rahmaan, 2003; Tieleman et al., 2003); examples
are rapid, reversible and repeatable changes in body
composition, organ size and digestive processes (Starck,
1999a; McWilliams and Karasov, 2001; Starck and Rahmaan,
2003). Birds resident in temperate climates provide a
natural experiment in phenotypic flexibility with respect to
body composition, organ size and digestive tract morph-
ology (Pendergast and Boag, 1973; Paulus, 1982; Dawson
et al., 1983; Liu and Li, 2006; Liknes and Swanson, 2011).
Previous research suggests that the avian digestive tract is a
suitable organ to study the basic mechanism of phenotypic
structural variation (Starck, 1999b; Guglielmo and
Williams, 2003; Karasov et al., 2004; Lavin et al., 2008).
Among others, we suggest the following causes: (1) The
morphologies of avian digestive tracts are correlated with
food composition; frugivorous and nectar–feeding birds
have smaller and shorter digestive tracts than granivorous
and insectivorous species (Kehoe and Ankney, 1985; Levey
and Karasov, 1989; Barton and Houston, 1994; DeGolier
et al., 1999). (2) Many avian species change their diet
throughout the year. Birds often switch from high fat
foods and carbohydrates in autumn and winter (e.g. seeds
and berries) to high protein foods (e.g. insects and new
plant tissue) in spring and summer (Bairlein, 1985;
Biebach, 1996; Novoa et al., 1996). (3) The avian digestive
tract depends not only on resorption and assimilation pro-
cesses but also on adjustment of its morphology, such as
its epithelial resorptive surface dimensions, volume and
transport efficiency (Karasov, 1996; Starck, 1996; Karasov
et al., 2004). In winter, as the energy demand increases,
some species of birds are able to increase digestive effi-
ciency by changes in their digestive tract morphology
(Paulus, 1982; Pulliainen and Tunkkari, 1983; Novoa et al.,
1996). Indeed, the mass of the digestive tract provides a
useful indication of daily energy expenditure. The digest-
ive tract and liver of vertebrates may account for 20–25%
of the respiration of an entire animal (Li et al., 2001;
Villarin et al., 2003). Within species, increases in size of
the alimentary organs are associated with increases in
basal metabolism (Swanson, 2010; Karasov et al., 2011).
The Chinese Bulbul (Pycnonotus sinensis) is a small

passerine that is a resident breeder in vast areas of East
and South Asia, including central, southern and eastern
China. It is the most common bird in Zhejiang Province
and has recently spread to central China (MacKinnon
and Phillipps, 2000). Chinese Bulbuls preferentially live
in scrub lands, bamboo and coniferous forests, but also
inhabit vegetation around villages on deforested plains
and hills (Zheng and Zhang, 2002). They are reported to
have a high body temperature (Tb), an upper critical
temperature (Tuc), low BMR, a relatively wide thermal
neutral zone (TNZ) (Zhang et al., 2006) and are able to
increase their body mass and BMR in response to colder
temperatures (Zheng et al., 2008a). This species appears to
meet increased energy requirements in winter by increasing
the mass of certain internal organs and respiratory enzyme
activity (Zhang et al., 2008; Zheng et al., 2010). Chinese
bulbuls are omnivorous, feeding mainly on arthropods
(insects and spiders) and mollusks (snails and slugs) in
spring and summer and plant foods (buds, fruits and seeds)
in autumn and winter (Pang, 1981; Peng et al., 2008). We
selected this species because: 1) Chinese Bulbuls are
common residents in Zhejiang Province and a good species
in which to study seasonal change and 2) our previous re-
search on this species (Zheng et al., 2008a; Peng et al.,
2010; Zheng et al., 2010; Zhou et al., 2010; Ni et al., 2011;
Wu et al., 2014; Zheng et al., 2013; 2014) provides critical
background information. However, seasonal patterns of
energy budgets in wild bulbuls throughout an entire annual
cycle have not been previously measured.
We measured the body mass, energy budget and di-

gestive tract morphology of Chinese Bulbuls in all four
seasons in Wenzhou, China. We hypothesized that
phenotypic variation in overall body mass and digestive
organ mass may play important roles in the adaptation
of this species to changing seasonal environments. We
predicted that Chinese Bulbuls increase their body mass,
energy intake, length and mass of their digestive tract in
colder seasons.

Methods
Study site and animals
This study was carried out in Wenzhou City, Zhejiang
Province (27°29′N, 120°51′E, 14 m in elevation). The
climate in Wenzhou is warm–temperate with an aver-
age annual rainfall of 1700 mm spread across the entire
year with slightly more precipitation during winter and
spring. Mean daily maximum temperatures range from
39°C in July to 8°C in January and mean daily minima
from 28°C in July to 3°C in January. The mean annual
temperature is 18°C. There are seven months (March
through September) in which the extreme maximum
ambient temperature is above 37°C. Daylight ranges
from 14.3 in July to 10.2 h in January. In Wenzhou, the
mean temperatures of spring (March to May), summer
(June to August), autumn (September to November)
and winter (December to February) are 15, 32, 27 and
8°C (data from Wenzhou Bureau of Meteorology).
Chinese Bulbuls were captured in mist nets during the

four seasons from 2009 to 2011. Eighteen to 24 adult
bulbuls were caught in each season, 88 birds in total.
Body mass to the nearest 0.1 g was determined immedi-
ately upon capture with a Sartorius balance (model
BT25S). Bulbuls were transported to outdoor aviaries
and caged for 1 or 2 days (50 cm × 30 cm × 20 cm)
under natural photoperiod and temperature before
measurement of their energy budget. Food and water
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were supplied ad libitum. Body temperatures were mea-
sured between 21:00 and 23:00 hours by inserting the
probe of a digital thermometer (Beijing Normal University
Instruments Co.) 3 cm into the cloaca of each bird and
taking a reading in 30 s. Animal handling and experimen-
tal protocols were approved by the Wenzhou Institutional
Animal Care and Use Committee and conformed to the
guidelines of the Ornithological Council.

Energy budget
The energy intake of the birds caught in each season
was measured over three days according to previously
established methods (Klaassen et al., 2004; Ni et al.,
2011). Non-absorped food and feces were collected after
the 3-day period, separated manually and oven-dried at
70°C for at least 72 h. The caloric contents of the dried
food and feces were then determined using a C 200 oxygen
bomb calorimeter (IKA Instrument, Germany). Gross
energy intake (GEI), fecal energy (FE), digestible energy
intake (DEI) and digestibility of energy were calculated
according to Li and Wang (2005) and Ni et al. (2011):

GEI kJ=dayð Þ ¼ dry food intake g=dayð Þ � caloric value of dry food kJ=gð Þ
FE kJ=dayð Þ ¼ dry mass offeces g=dayð Þ � caloric value of dryfeces kJ=gð Þ
DEI kJ=dayð Þ ¼ GEI kJ=dayð Þ–FE kJ=dayð Þ
Digestibility %ð Þ ¼ DEI kJ=dayð Þ=GEI kJ=dayð Þ � 100%

Body water and fat content
Birds were sacrificed by decapitation at the conclusion of
energy budget measurements, the digestive tract was re-
moved and the gizzard, small intestines and rectum were
separated (see below). Liver, heart, lung, spleen and kidneys
were then removed. The remaining carcasses (including the
brain) were weighed to determine wet mass, dried in an
oven at 60°C to a constant mass and then weighed (to
1 mg) again to determine dry mass. Total fat was extracted
from the dried carcasses by ether extraction in a Soxtec
2050 Soxhlet apparatus (FOSS Instrument, Germany). Body
water and fat content were calculated according to Dawson
et al. (1983) and Zhao et al. (2010):

Body water content ¼ wet carcass mass–drycarcass massð Þ
� wet carcass mass–body fat contentð Þ
� 100 %

Body fat content ¼ total fat of carcass=wet carcass massð Þ
� 100 %

Measurements of digestive tract morphology
The digestive tract (gizzard, small intestines and rectum)
of each bird was measured (±1 mm) and weighed
(±0.1 mg). The gizzard, small intestines and rectum were
then rinsed with a saline solution to eliminate all gut
contents before being dried and reweighed. These organs
were then dried to a constant mass over three days at 65°C
and weighed to the nearest 0.1 mg (Williams and Tieleman,
2000; Liu and Li, 2006).

Statistics
The data were analyzed using SPSS (version 12.0 for
Windows). Distributions of all variables were tested for
normality using the Kolmogorov-Smirnov test. Non-
normal distributed data were transformed using natural
logarithms. A one-way ANOVA was used to determine
the significance of seasonal differences in the measured
variables. Least significant difference (LSD) post hoc tests
were used when differentiation among seasons was re-
quired. Seasonal differences in the measured variables,
except for those in body mass and temperature, were
also evaluated using an ANCOVA with body mass as a
covariate where appropriate. For percentage data, an
arcsine-square-root transformation was carried out prior
to analysis to normalize the data. The results are
expressed as mean ± SE, where p < 0.05 was considered
statistically significant.

Results
Body mass and temperature
The body mass of Chinese Bulbuls showed a significant
seasonal variation (ANOVA, F3,84 = 8.493, p < 0.001,
Table 1); birds caught in winter and spring were signifi-
cantly heavier than those caught in summer and autumn
(post hoc, p < 0.05). Body temperature also showed signifi-
cant seasonal variation (ANOVA, F3,84 = 2.957, p < 0.05,
Table 1); birds caught in winter had significantly lower
body temperatures than those caught in spring, summer
and autumn (post hoc, p < 0.05).

Body fat and water content
Body fat content showed significant seasonal variation
(ANCOVA, F3,83 = 11.015, p < 0.001; Table 1) and was
markedly higher in autumn and winter than in sum-
mer (post hoc, p < 0.05). No significant seasonal vari-
ation was found in water content (ANCOVA, F3,83 = 1.447,
p > 0.05, Table 1).

Energy intake and digestibility
Gross energy intake (GEI) varied significantly with season
(ANCOVA, F3,83 = 8.886, p < 0.001, Table 1). The GEI of
bulbuls caught in winter was 23.2% to 63.9% higher than
that of birds caught in spring, summer and autumn.
Significant seasonal variation was also apparent in fecal
energy (FE) (ANCOVA, F3,83 = 7.955, p < 0.001, Table 1).
The FE of bulbuls caught in winter and spring was sig-
nificantly higher than that of birds caught in summer
and autumn (post hoc, p < 0.05). Digestible energy in-
take (DEI) also showed significant seasonal variation
(ANCOVA, F3,83 = 4.090, p < 0.01, Table 1); the DEI of
birds caught in winter was 28.4% to 47.2% higher than



Table 1 Seasonal variations in body mass, body composition and energy budgets in Chinese Bulbuls

Category Spring Summer Autumn Winter p value

Sample size (n) 23 23 24 18

Body masses (g) 30.2 ± 0.4b 27.9 ± 0.4a 27.47 ± 0.8a 30.8 ± 0.5b <0.001

Body temperature (°C) 41.3 ± 0.1b 41.3 ± 0.2b 41.6 ± 0.6b 40.8 ± 0.2a <0.05

Carcass wet mass (g) 18.36 ± 0.50b 16.55 ± 0.33a 18.42 ± 0.66b 22.04 ± 0.35c <0.001

Carcass dry mass (g) 5.72 ± 0.15b 4.81 ± 0.14a 5.65 ± 0.21b 6.89 ± 0.18c <0.001

Body fat mass (g) 1.77 ± 0.08ab 1.58 ± 0.08a 1.91 ± 0.08b 2.23 ± 0.09c <0.001

Body fat content (%) 6.12 ± 0.31ab 5.46 ± 0.30a 6.66 ± 0.01b 7.61 ± 0.32c <0.001

Body water content (%) 76.26 ± 0.77 78.42 ± 0.77 77.53 ± 0.77 76.54 ± 0.89 >0.05

GEI (kJ/day) 183.93 ± 12.83b 139.19 ± 8.13a 151.72 ± 11.00a 226.51 ± 13.35c <0.001

FE (kJ/day) 92.47 ± 8.74bc 60.48 ± 4.58a 74.78 ± 6.58ab 108.80 ± 8.67c <0.001

DEI (kJ/day) 91.46 ± 8.36a 78.71 ± 5.28a 76.94 ± 6.71a 117.70 ± 8.79b <0.01

Digestibility (%) 50.49 ± 2.86 56.44 ± 2.33 50.74 ± 2.17 52.03 ± 2.63 >0.05

Data are presented as mean ± SE, bold indicated statistical differences. The different superscripts in the same row indicate significant differences.
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that of birds caught in spring, summer and autumn.
However, no significant seasonal variation was found in
digestibility (ANCOVA, F3,83 = 1.074, p > 0.05, Table 1).
Log body mass was positively correlated with the log of
GEI and DEI (Figures 1 and 2).

Digestive tract morphology
The length of the complete digestive tract and small in-
testines varied significantly with season (ANCOVA, total
digestive tract, F3,83 = 9.464, p < 0.001; small intestines,
F3,83 = 7.555, p < 0.001, Table 2), being longer in birds
Figure 1 Least squares regression of body mass as a dependent varia
caught in winter than in birds caught in spring, summer
and autumn (post hoc, p < 0.05). The log of digestive
tract length is positively correlated with log body mass
(r2 = 0.198, p < 0.001, Figure 3a), GEI (r2 = 0.095, p < 0.01,
Figure 4a) and DEI (r2 = 0.071, p < 0.05, Figure 5a). No
significant seasonal variation was apparent in gizzard or
rectum length (ANCOVA, gizzard, F3,83 = 1.353, p > 0.05;
rectum, F3,83 = 0.984, p > 0.05, Table 2).
Significant seasonal variation was apparent in both the

wet and dry mass of the complete digestive tract
(ANCOVA, wet mass, F3,83 = 6.805, p < 0.001; dry mass,
ble of GEI with seasonal acclimatization in Chinese Bulbuls.



Figure 2 Least square regression of body mass as a dependent variable of DEI with seasonal acclimatization in Chinese Bulbuls.
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F3,83 = 11.850, p < 0.001, Table 2); birds caught in winter
had a heavier digestive tract than those caught in spring,
summer and autumn (post hoc, p < 0.05). The log of wet
and dry digestive tract mass was positively correlated
with log body mass (wet mass, r2 = 0.135, p < 0.001; dry
mass, r2 = 0.420, p < 0.001, Figure 3b and c), GEI (wet
Table 2 Seasonal variations in digestive tract morphology in

Category Spring Summer

Sample size (n) 23 23

Digestive tract length (mm)

Gizzard 14.6 ± 0.5b 13.6 ± 0.5b

Small intestines 120.6 ± 2.0b 115.0 ± 2.0

Rectum 12.1 ± 0.5 12.3 ± 0.5

Total digestive tract 147.4 ± 2.0b 140.9 ± 2.0

Digestive tract wet mass (mg)

Gizzard 626.1 ± 17.3c 547.5 ± 17

Small intestine 1681.1 ± 69.1a 1605.3 ± 6

Rectum 145.7 ± 10.0a 141.8 ± 9.9

Total digestive tract 2452.9 ± 77.8a 2294.6 ± 7

Digestive tract dry mass (mg)

Gizzard 183.8 ± 6.1b 156.3 ± 6.1

Small intestines 303.3 ± 13.1a 287.6 ± 12

Rectum 24.2 ± 1.2b 20.3 ± 1.2a

Total digestive tract 511.4 ± 15.8b 464.2 ± 15

Data are presented as mean ± SE, bold indicated statistical differences. The differen
mass, r2 = 0.094, p < 0.01; dry mass, r2 = 0.153, p < 0.001,
Figure 4b and c) and DEI (wet mass, r2 = 0.063, p < 0.05;
dry mass, r2 = 0.047, p < 0.05, Figure 5b and c). Wet and
dry gizzard mass were significantly (wet mass:
ANCOVA, F3,83 = 10.212, p < 0.001; dry mass: ANCOVA,
F3,83 = 4.523, p < 0.01, Table 2) higher in spring than in
Chinese Bulbuls

Autumn Winter p value

24 18

13.7 ± 0.5b 14.8 ± 0.6a >0.05
a 115.9 ± 2.0a 128.6 ± 2.3c <0.001

12.9 ± 0.5 13.2 ± 0.5 >0.05
a 142.4 ± 2.0ab 156.7 ± 2.3c <0.001

.2b 488.4 ± 17.3a 545.9 ± 19.9b <0.001

8.5a 1643.6 ± 68.9a 2115.2 ± 79.9b <0.001
a 176.7 ± 10.0b 138.6 ± 11.5a <0.05

7.1a 2308.8 ± 77.5a 2799.7 ± 89.6b <0.001

a 153.7 ± 6.1a 166.3 ± 7.1b <0.01

.9a 352.5 ± 13.0b 413.4 ± 15.0c <0.001

25.5 ± 1.2b 26.0 ± 1.4b <0.01

.6a 531.8 ± 15.7b 605.7 ± 15.0c <0.001

t superscripts in the same row indicate significant differences.



Figure 3 Least squares regression of digestive tract length, wet mass and dry mass, as dependent variables of body mass, with
seasonal acclimatization in Chinese Bulbuls.
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summer and autumn (post hoc, p < 0.05). The wet and dry
mass of the small intestines also varied significantly with
season (wet mass: ANCOVA, F3,83 = 9.195, p < 0.001; dry
mass: ANCOVA, F3,83 = 16.856, p < 0.001, Table 2). The
wet mass of the small intestines of birds caught in winter
was 20.5% to 26.0% higher than those of their spring, sum-
mer and autumn counterparts, whereas the dry mass was
26.6% to 30.4% higher. The wet and dry mass of the rec-
tum also varied significantly with season (wet mass:
ANCOVA, F3,83 = 2.917, p < 0.05; dry mass: F3,83 = 16.856,
p < 0.01, Table 2). The wet rectal mass was higher in birds
caught in autumn than in those caught in spring, summer
and winter (post hoc, p < 0.05), but rectal dry mass was
lower in birds caught in summer than in those caught in
spring, autumn and winter (post hoc, p < 0.05).

Discussion
We found significant seasonal variation in body mass,
body fat, GEI, FE and DEI in Chinese Bulbuls, all of
which were higher in winter than in other seasons. Birds
caught in winter also had significantly longer and heavier
digestive tracts than those caught in other seasons.

Effect of season on body mass and body composition
Seasonal changes in body mass, especially in small birds,
are considered an adaptive strategy essential for survival
(Pendergast and Boag, 1973; Cooper, 2000). It has been
reported that many small birds, such as Common Redpolls
(Acanthis flammea) (Pohl and West, 1973), American
Goldfinches (Carduelis tristis) (Dawson and Carey, 1976),
Darkeyed Juncos (Junco hyemalis) (Swanson, 1991),
Chinese Bulbuls (Zheng et al., 2008a), Eurasian Tree
Sparrows (Passer montanus) (Zheng et al., 2008b), Red-
winged Starlings (Onychognathus morio) (Chamane and
Downs, 2009), Black-capped Chickadees (Poecile atricapillus)
and White-breasted Nuthatchs (Sitta carolinensis) (Liknes
and Swanson, 2011) increase their body mass in winter
and spring. In this study, as earlier reported, Chinese Bulbuls
increase mass in winter and spring.
A variety of physiological responses associated with

winter acclimatization in small birds have been identified.
These include winter fuel storage, increased basal meta-
bolic rates and seasonal changes in lipid and carbohydrate
metabolism (Marsh and Dawson, 1989). Increased body
fat levels are common in many temperate wintering
passerines, enabling these birds to meet thermoregula-
tory demands and provide a nutritional buffer against
temporary foraging restrictions caused by inclement
weather (Dawson and Marsh, 1986; Swanson, 1991;
O’Connor, 1995). Similar increases in body fat associ-
ated with seasonal acclimatization have been observed
in House Finches (Carpodacus mexicanus) (Dawson
et al., 1983; O’Connor, 1995), Lesser Scaups (Aythya
affinis) (Austin and Fredrickson, 1987), Dark-eyed Juncos



Figure 4 Least squares regression of digestive tract length, wet mass and dry mass, as dependent variables of GEI, with seasonal
acclimatization in Chinese Bulbuls.
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(Swanson, 1991), Bar-tailed Godwits (Limosa lapponica)
(Landys-Ciannelli et al., 2003), Juniper Titmice (Baeolophus
ridgwayi) and Mountain Chickadees (Poecile gambeli)
(Cooper, 2007). The energy sparing hypothesis (King, 1961)
states that winter birds would use more of their fat stores
overnight than summer birds and lead to a greater need to
replenish stores daily than in any other season (especially
summer). In support of this hypothesis, we show that
winter fattening is characterized by increased body
mass in winter acclimatized birds in contrast to summer
acclimatized birds.
It is generally recognized that a positive energy balance is

a prerequisite for the accumulation of fat. This positive bal-
ance results from an adaptively increased energy income
that periodically exceeds energy output as birds establish
and replenish their fat reserves (Swanson, 1991; O’Connor,
1995; Cooper, 2007). An increase in fat reserves can sup-
port increased overnight energy expenditures (lower
temperatures and longer nights during winter) and supply
emergency energy reserves during periods of resource
shortage (snowfalls and ice storms) (Stokkan et al., 1985;
O’Connor, 1995).

Effect of seasonal acclimatization on energy intake and
digestibility
Body mass has been used as an index of the general con-
dition in animals, the assumption being that peak annual
mass is associated with peak condition (Kelly and
Weathers, 2002). Energy intake can compensate for the
energy expended in thermogenesis, essential for survival
(Evans, 1976; Reinecke et al., 1982; Hegemann et al.,
2012). We found that the body mass of Chinese Bulbuls
was highest in spring and winter and that this was paral-
leled by changes in GEI and DEI (Table 1; Figures 1 and 2).
Chinese Bulbuls caught in spring and winter showed sig-
nificantly higher GEI and DEI: both increased with lower
ambient temperatures and poor food quality. GEI was 50%
and 69% higher in spring and winter than in summer, and
DEI was 42% and 91% higher in spring and winter than in
summer.
Many studies have found evidence of significant sea-

sonal effects on daily energy intake within species (Bryant
et al., 1985; Kelly, 1998; Weathers and Sullivan, 1993;
Webster and Weathers, 2000; Guillemette and Butler,
2012; Hegemann et al., 2012). For example, Kendeigh
(1945) found that the GEI of English House Sparrows
(P. domesticus) was 51% higher in winter than in sum-
mer. Similarly, Stokkan et al. (1986) found that Rock
Ptarmigans (Lagotus muta) consume twice as much food
between February and March as they do in August, while
Lou et al. (2013) found that the GEI and DEI of Elliot’s
Pheasants (Syrmaticus ellioti) were respectively 51% and
53% higher in winter than in summer. Similar changes in
food intake associated with seasonal acclimatization and



Figure 5 Least squares regression of digestive tract length, wet mass and dry mass, as dependent variables of DEI, with seasonal
acclimatization in Chinese Bulbuls.

Wu et al. Avian Research 2014, 5:4 Page 8 of 10
http://www.avianres.com/content/5/1/4
migration have been observed in other birds, including
Kingfishers (Ceryle alcyon) (Kelly, 1998), Red Knots (Calidris
canutus) and Common Sandpipers (Actitis hypoleucos)
(Kvist and Lindström, 2003), as well as in small mammals
such as Wood Mice (Apodemus sylvaticus) (Corp et al.,
1999) and Mongolian Gerbils (Meriones unguiculatus)
(Li and Wang, 2005). This suggests that enhancement
of GEI and DEI is a response to higher energy demands
for small endotherms in general (Stokkan et al., 1986;
Li and Wang, 2005).

Effect of seasonal acclimatization on digestive tract
morphology
Seasonal changes in digestive tract morphology have
been demonstrated in many birds (Pendergast and Boag,
1973; Reinecke et al., 1982; Pulliainen and Tunkkari,
1983; Novoa et al., 1996). Environmental conditions that
cause increased nutritional or energy requirements could
be responsible for these observed increases in the size of
digestive organs. The digestive modulation model predicts
an increase in the size of the intestines (length, circumfer-
ence and surface area) in response to either increasing or
decreasing food quality (Sibley, 1981; McWilliams and
Karasov, 2001).
A question arises about the ecological implications of

having a larger gut in winter and autumn. Birds typically
consume more food in winter and autumn, which
appears to stimulate the enlargement of digestive organs
such as the gizzard, small intestines, rectum and the
overall digestive tract. Increasing gut size in this way in
response to decreasing food quality can yield several
benefits. One is that it allows an increase in the mean
retention time of the digesta, thereby increasing their di-
gestibility if the ingestion rate is constant, or it allows a
constant mean retention time, thereby maintaining di-
gestive efficiency if ingestion increases (McWilliams and
Karasov, 2001; Karasov, 2011; Karasov et al., 2011). For
example, Sibley (1981) found that the small intestines of
European Starlings (Sturnus vulgaris) were longer in
winter when they fed predominantly on seeds and ber-
ries than in other seasons. Starck (1999b) also found that
there was a significant relationship between food digest-
ibility and small intestine length in Willow Ptarmigans
(L. lagopus), Spruce Grouse (Falcipennis canadensis),
Spur-winged Geese (Plectropterus gambensis) and Gadwalls
(A. strepera). Our results show that Chinese Bulbuls display
marked seasonal changes in the length and mass of their di-
gestive tract. The length of both the complete digestive
tract and small intestines were significantly longer in winter
than in spring, summer and autumn. The wet and dry mass
of both the complete digestive tract and the small intestines
were also significantly greater in winter than in other sea-
sons. Seasonal trends in the length and mass of digestive
tracts were closely correlated with those in body mass, GEI
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and DEI (Figures 3, 4, 5). These seasonal differences in the
weight of the digestive tract were probably caused by re-
duced winter food quality and quantity. In winter, bulbuls
in Wenzhou mainly feed on plants despite the much colder
mean temperature of 8°C (Pang, 1981; Peng et al., 2008). In
bulbuls, as in other small birds, increases in digestive tract
capacity, as well as elevated uptake of nutrients by the small
intestines, appear to increase the rate of assimilation of nu-
trients, thereby increasing body mass and improving winter
survival (Karasov et al., 2011).
During the winter, birds have a relatively high daily en-

ergy expenditure, requiring enlarged abdominal organs for
support (McKinney and McWilliams, 2005; Karasov et al.,
2011). Birds consume more food in winter, which appar-
ently stimulates the enlargement of organs such as the liver,
intestines and the stomach (Williams and Tieleman, 2000).

Conclusions
In summary, our key findings were: 1) Chinese Bulbuls have
higher body mass and body fat in winter. This is consistent
with our prediction that marked winter increases in GEI
and DEI are aspects of winter acclimatization and that sea-
sonal variation in digestive performance in bulbuls is simi-
lar to that observed in other small, temperate bird species.
2) The length and wet and dry mass of the digestive tract of
Chinese Bulbuls are higher in winter and have a signifi-
cantly positive relationship with body masses, GEI and DEI.
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